Implementation of dressed cross-section model into the BIT1 code
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00583705" target="_blank" >RIV/61389021:_____/23:00583705 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1140/epjd/s10053-023-00682-w" target="_blank" >https://link.springer.com/article/10.1140/epjd/s10053-023-00682-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjd/s10053-023-00682-w" target="_blank" >10.1140/epjd/s10053-023-00682-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of dressed cross-section model into the BIT1 code
Popis výsledku v původním jazyce
In the present work, we describe a new method, dressed cross-section model (DCSM), enabling implementation of large number of atomic transitions (~106 and more) in the kinetic simulations. The effective collision cross-sections derived from the DCSM show expected asymptotic behaviour: (i) For low plasma density, they reduce to the conventional cross-sections for single-step transitions from the ground state - (ii) the Maxwell-averaged rate coefficients are equal to the corresponding rate coefficients obtained from the Collisional-Radiative Model. We describe implementation of ionization and recombination DCSM into the PIC MC code BIT1 and present new results for tokamak plasma edge modelling. Graphical abstract: Realistic simulations of the plasma edge require precise treatment of plasma–impurity and plasma–neutral particle interactions. Full fluid, or fluid plasma—kinetic neutral models employ effective collision rates derived from the Collisional-Radiative Models (CRM) precalculated by different atomic data providers (e.g. see Summers and O’Mullane (AIP Conf. Proc. 1344:179, 2011)). These CRM incorporate large number of atomic states (103 and more) and corresponding transitions (~106), but assume Maxwellian energy distribution functions (EDF) for colliding particles. In order to describe processes in a non-Maxwellian plasma, kinetic models are applied. Such models operate with collision cross-sections and due to limited computing power of present-day computing facilities can simulate just a few dozens of interaction channels, see Tskhakaya (Plasma Phys Contr Fusion 59:114001, 2017), Mijin et al. (Comput Phys Commun 258:107600, 2021) and references there.[Figure not available: see fulltext.] The DCSM consists of two steps: calculation of averaged cross-sections for excitation collisions from the ground state and introduction of effective cross-sections based on CRM rate coefficients. The effective cross-sections derived from the DCSM show expected asymptotic behaviour: i. For low plasma density, they reduce to the direct transition cross-sections from the ground state - and ii. the Maxwell-averaged rate coefficients obtained from the DCSM are equal the corresponding CRM rate coefficients. We demonstrate application of the DCSM in simulations of the tokamak scrape-off layer.
Název v anglickém jazyce
Implementation of dressed cross-section model into the BIT1 code
Popis výsledku anglicky
In the present work, we describe a new method, dressed cross-section model (DCSM), enabling implementation of large number of atomic transitions (~106 and more) in the kinetic simulations. The effective collision cross-sections derived from the DCSM show expected asymptotic behaviour: (i) For low plasma density, they reduce to the conventional cross-sections for single-step transitions from the ground state - (ii) the Maxwell-averaged rate coefficients are equal to the corresponding rate coefficients obtained from the Collisional-Radiative Model. We describe implementation of ionization and recombination DCSM into the PIC MC code BIT1 and present new results for tokamak plasma edge modelling. Graphical abstract: Realistic simulations of the plasma edge require precise treatment of plasma–impurity and plasma–neutral particle interactions. Full fluid, or fluid plasma—kinetic neutral models employ effective collision rates derived from the Collisional-Radiative Models (CRM) precalculated by different atomic data providers (e.g. see Summers and O’Mullane (AIP Conf. Proc. 1344:179, 2011)). These CRM incorporate large number of atomic states (103 and more) and corresponding transitions (~106), but assume Maxwellian energy distribution functions (EDF) for colliding particles. In order to describe processes in a non-Maxwellian plasma, kinetic models are applied. Such models operate with collision cross-sections and due to limited computing power of present-day computing facilities can simulate just a few dozens of interaction channels, see Tskhakaya (Plasma Phys Contr Fusion 59:114001, 2017), Mijin et al. (Comput Phys Commun 258:107600, 2021) and references there.[Figure not available: see fulltext.] The DCSM consists of two steps: calculation of averaged cross-sections for excitation collisions from the ground state and introduction of effective cross-sections based on CRM rate coefficients. The effective cross-sections derived from the DCSM show expected asymptotic behaviour: i. For low plasma density, they reduce to the direct transition cross-sections from the ground state - and ii. the Maxwell-averaged rate coefficients obtained from the DCSM are equal the corresponding CRM rate coefficients. We demonstrate application of the DCSM in simulations of the tokamak scrape-off layer.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal D
ISSN
1434-6060
e-ISSN
1434-6079
Svazek periodika
77
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
135
Kód UT WoS článku
001030559600004
EID výsledku v databázi Scopus
2-s2.0-85165225951