Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Implementation of dressed cross-section model into the BIT1 code

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00583705" target="_blank" >RIV/61389021:_____/23:00583705 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1140/epjd/s10053-023-00682-w" target="_blank" >https://link.springer.com/article/10.1140/epjd/s10053-023-00682-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1140/epjd/s10053-023-00682-w" target="_blank" >10.1140/epjd/s10053-023-00682-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Implementation of dressed cross-section model into the BIT1 code

  • Popis výsledku v původním jazyce

    In the present work, we describe a new method, dressed cross-section model (DCSM), enabling implementation of large number of atomic transitions (~106 and more) in the kinetic simulations. The effective collision cross-sections derived from the DCSM show expected asymptotic behaviour: (i) For low plasma density, they reduce to the conventional cross-sections for single-step transitions from the ground state - (ii) the Maxwell-averaged rate coefficients are equal to the corresponding rate coefficients obtained from the Collisional-Radiative Model. We describe implementation of ionization and recombination DCSM into the PIC MC code BIT1 and present new results for tokamak plasma edge modelling. Graphical abstract: Realistic simulations of the plasma edge require precise treatment of plasma–impurity and plasma–neutral particle interactions. Full fluid, or fluid plasma—kinetic neutral models employ effective collision rates derived from the Collisional-Radiative Models (CRM) precalculated by different atomic data providers (e.g. see Summers and O’Mullane (AIP Conf. Proc. 1344:179, 2011)). These CRM incorporate large number of atomic states (103 and more) and corresponding transitions (~106), but assume Maxwellian energy distribution functions (EDF) for colliding particles. In order to describe processes in a non-Maxwellian plasma, kinetic models are applied. Such models operate with collision cross-sections and due to limited computing power of present-day computing facilities can simulate just a few dozens of interaction channels, see Tskhakaya (Plasma Phys Contr Fusion 59:114001, 2017), Mijin et al. (Comput Phys Commun 258:107600, 2021) and references there.[Figure not available: see fulltext.] The DCSM consists of two steps: calculation of averaged cross-sections for excitation collisions from the ground state and introduction of effective cross-sections based on CRM rate coefficients. The effective cross-sections derived from the DCSM show expected asymptotic behaviour: i. For low plasma density, they reduce to the direct transition cross-sections from the ground state - and ii. the Maxwell-averaged rate coefficients obtained from the DCSM are equal the corresponding CRM rate coefficients. We demonstrate application of the DCSM in simulations of the tokamak scrape-off layer.

  • Název v anglickém jazyce

    Implementation of dressed cross-section model into the BIT1 code

  • Popis výsledku anglicky

    In the present work, we describe a new method, dressed cross-section model (DCSM), enabling implementation of large number of atomic transitions (~106 and more) in the kinetic simulations. The effective collision cross-sections derived from the DCSM show expected asymptotic behaviour: (i) For low plasma density, they reduce to the conventional cross-sections for single-step transitions from the ground state - (ii) the Maxwell-averaged rate coefficients are equal to the corresponding rate coefficients obtained from the Collisional-Radiative Model. We describe implementation of ionization and recombination DCSM into the PIC MC code BIT1 and present new results for tokamak plasma edge modelling. Graphical abstract: Realistic simulations of the plasma edge require precise treatment of plasma–impurity and plasma–neutral particle interactions. Full fluid, or fluid plasma—kinetic neutral models employ effective collision rates derived from the Collisional-Radiative Models (CRM) precalculated by different atomic data providers (e.g. see Summers and O’Mullane (AIP Conf. Proc. 1344:179, 2011)). These CRM incorporate large number of atomic states (103 and more) and corresponding transitions (~106), but assume Maxwellian energy distribution functions (EDF) for colliding particles. In order to describe processes in a non-Maxwellian plasma, kinetic models are applied. Such models operate with collision cross-sections and due to limited computing power of present-day computing facilities can simulate just a few dozens of interaction channels, see Tskhakaya (Plasma Phys Contr Fusion 59:114001, 2017), Mijin et al. (Comput Phys Commun 258:107600, 2021) and references there.[Figure not available: see fulltext.] The DCSM consists of two steps: calculation of averaged cross-sections for excitation collisions from the ground state and introduction of effective cross-sections based on CRM rate coefficients. The effective cross-sections derived from the DCSM show expected asymptotic behaviour: i. For low plasma density, they reduce to the direct transition cross-sections from the ground state - and ii. the Maxwell-averaged rate coefficients obtained from the DCSM are equal the corresponding CRM rate coefficients. We demonstrate application of the DCSM in simulations of the tokamak scrape-off layer.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Physical Journal D

  • ISSN

    1434-6060

  • e-ISSN

    1434-6079

  • Svazek periodika

    77

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    9

  • Strana od-do

    135

  • Kód UT WoS článku

    001030559600004

  • EID výsledku v databázi Scopus

    2-s2.0-85165225951