Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00584064" target="_blank" >RIV/61389021:_____/23:00584064 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/23:00573486
Výsledek na webu
<a href="https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2022.0216" target="_blank" >https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2022.0216</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rsta.2022.0216" target="_blank" >10.1098/rsta.2022.0216</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma
Popis výsledku v původním jazyce
In this review, we describe the application of Boltzmann kinetic equations for modelling warm dense matter and plasma formed after irradiation of solid materials with intense femtosecond X-ray pulses. Classical Boltzmann kinetic equations are derived from the reduced N-particle Liouville equations. They include only single-particle densities of ions and free electrons present in the sample. The first version of the Boltzmann kinetic equation solver was completed in 2006. It could model non-equilibrium evolution of X-ray-irradiated finite-size atomic systems. In 2016, the code was adapted to study plasma created from X-ray-irradiated materials. Additional extension of the code was then also performed, enabling simulations in the hard X-ray irradiation regime. In order to avoid treatment of a very high number of active atomic configurations involved in the excitation and relaxation of X-ray-irradiated materials, an approach called 'predominant excitation and relaxation path' (PERP) was introduced. It limited the number of active atomic configurations by following the sample evolution only along most PERPs. The performance of the Boltzmann code is illustrated in the examples of X-ray-heated solid carbon and gold. Actual model limitations and further model developments are discussed. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Název v anglickém jazyce
Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma
Popis výsledku anglicky
In this review, we describe the application of Boltzmann kinetic equations for modelling warm dense matter and plasma formed after irradiation of solid materials with intense femtosecond X-ray pulses. Classical Boltzmann kinetic equations are derived from the reduced N-particle Liouville equations. They include only single-particle densities of ions and free electrons present in the sample. The first version of the Boltzmann kinetic equation solver was completed in 2006. It could model non-equilibrium evolution of X-ray-irradiated finite-size atomic systems. In 2016, the code was adapted to study plasma created from X-ray-irradiated materials. Additional extension of the code was then also performed, enabling simulations in the hard X-ray irradiation regime. In order to avoid treatment of a very high number of active atomic configurations involved in the excitation and relaxation of X-ray-irradiated materials, an approach called 'predominant excitation and relaxation path' (PERP) was introduced. It limited the number of active atomic configurations by following the sample evolution only along most PERPs. The performance of the Boltzmann code is illustrated in the examples of X-ray-heated solid carbon and gold. Actual model limitations and further model developments are discussed. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences
ISSN
1364-503X
e-ISSN
1471-2962
Svazek periodika
381
Číslo periodika v rámci svazku
2253
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
20220216
Kód UT WoS článku
001021900200007
EID výsledku v databázi Scopus
2-s2.0-85163686172