Radiation-dominated injection of positrons generated by the nonlinear Breit-Wheeler process into a plasma channel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00584067" target="_blank" >RIV/61389021:_____/23:00584067 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/23:00368889
Výsledek na webu
<a href="https://pubs.aip.org/aip/pop/article/30/9/093107/2913099/Radiation-dominated-injection-of-positrons" target="_blank" >https://pubs.aip.org/aip/pop/article/30/9/093107/2913099/Radiation-dominated-injection-of-positrons</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0160121" target="_blank" >10.1063/5.0160121</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radiation-dominated injection of positrons generated by the nonlinear Breit-Wheeler process into a plasma channel
Popis výsledku v původním jazyce
Plasma acceleration is considered a prospective technology for building a compact multi-TeV electron-positron collider in the future. The challenge of this endeavor is greater for positrons than for the electrons because usually the self-generated fields from laser-plasma interaction are not well-suited for positron focusing and on-axis guiding. In addition, an external positron source is required, while electrons are naturally available in the plasma. Here, we study electron-positron pair generation by an orthogonal collision of a multi-PW laser pulse and a GeV electron beam by the nonlinear Breit-Wheeler process. We studied conditions favorable for positron deflection in the direction of the laser pulse propagation, which favors injection into the plasma for further acceleration. We demonstrate using the OSIRIS particle-in-cell framework that the radiation reaction triggered by ultra-high laser intensity plays a crucial role in the positron injection. It provides a suppression of the initial transverse momentum gained by the positrons from the Breit-Wheeler process. For the parameters used in this work, the intensity of at least 2.2 × 10 23 W / cm 2 is needed in order to inject more than 1% of positrons created. Above this threshold, the percentage of injected positrons rapidly increases with intensity. Moreover, subsequent direct laser acceleration of positrons in a plasma channel, using the same laser pulse that created them, can ensure a boost of the final positron energy by a factor of two. The positron focusing and guiding on the axis is provided by significant electron beam loading that changes the internal structure of the channel fields.
Název v anglickém jazyce
Radiation-dominated injection of positrons generated by the nonlinear Breit-Wheeler process into a plasma channel
Popis výsledku anglicky
Plasma acceleration is considered a prospective technology for building a compact multi-TeV electron-positron collider in the future. The challenge of this endeavor is greater for positrons than for the electrons because usually the self-generated fields from laser-plasma interaction are not well-suited for positron focusing and on-axis guiding. In addition, an external positron source is required, while electrons are naturally available in the plasma. Here, we study electron-positron pair generation by an orthogonal collision of a multi-PW laser pulse and a GeV electron beam by the nonlinear Breit-Wheeler process. We studied conditions favorable for positron deflection in the direction of the laser pulse propagation, which favors injection into the plasma for further acceleration. We demonstrate using the OSIRIS particle-in-cell framework that the radiation reaction triggered by ultra-high laser intensity plays a crucial role in the positron injection. It provides a suppression of the initial transverse momentum gained by the positrons from the Breit-Wheeler process. For the parameters used in this work, the intensity of at least 2.2 × 10 23 W / cm 2 is needed in order to inject more than 1% of positrons created. Above this threshold, the percentage of injected positrons rapidly increases with intensity. Moreover, subsequent direct laser acceleration of positrons in a plasma channel, using the same laser pulse that created them, can ensure a boost of the final positron energy by a factor of two. The positron focusing and guiding on the axis is provided by significant electron beam loading that changes the internal structure of the channel fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0016925" target="_blank" >EF18_053/0016925: ÚFP - Mobilita II</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics of Plasmas
ISSN
1070-664X
e-ISSN
1089-7674
Svazek periodika
30
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
093107
Kód UT WoS článku
001080884400007
EID výsledku v databázi Scopus
2-s2.0-85173461707