Heat transfer characteristics of multiple jet impingements using graphene nanofluid for automobile industry application
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00616617" target="_blank" >RIV/61389021:_____/24:00616617 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22320/24:43930286
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2451904924006115?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2451904924006115?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tsep.2024.102993" target="_blank" >10.1016/j.tsep.2024.102993</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heat transfer characteristics of multiple jet impingements using graphene nanofluid for automobile industry application
Popis výsledku v původním jazyce
The framework experimentally investigates the application of graphene water Nano fluid nozzles for liquid jet cooling, particularly for internal combustion engine piston cooling. It also explores cooling effectiveness on flat and uneven surfaces (copper, steel, Inconel) with varying thicknesses. Turbulent liquid jets impinge on heated surfaces under constant heat flux using nozzles of different diameters to ensure fully developed flow. Graphene nanofluid concentrations of 0.1%, 0.15%, and 0.2% are compared to water. The impact is analysed for multiple jet arrangements, flow rates, and impingement distances on heat transfer using a combined experimental and numerical approach and findings reveal that higher jet Reynolds numbers, temperature rises, and smaller nozzle-to-plate distances enhance heat transfer. Nanofluid concentration significantly improves heat transfer compared to water, with a maximum increase of 50% at 0.2% concentration. These results inform the optimization of cooling strategies for automotive components, aiding engineers in designing efficient thermal management systems for heat-sensitive vehicle parts.
Název v anglickém jazyce
Heat transfer characteristics of multiple jet impingements using graphene nanofluid for automobile industry application
Popis výsledku anglicky
The framework experimentally investigates the application of graphene water Nano fluid nozzles for liquid jet cooling, particularly for internal combustion engine piston cooling. It also explores cooling effectiveness on flat and uneven surfaces (copper, steel, Inconel) with varying thicknesses. Turbulent liquid jets impinge on heated surfaces under constant heat flux using nozzles of different diameters to ensure fully developed flow. Graphene nanofluid concentrations of 0.1%, 0.15%, and 0.2% are compared to water. The impact is analysed for multiple jet arrangements, flow rates, and impingement distances on heat transfer using a combined experimental and numerical approach and findings reveal that higher jet Reynolds numbers, temperature rises, and smaller nozzle-to-plate distances enhance heat transfer. Nanofluid concentration significantly improves heat transfer compared to water, with a maximum increase of 50% at 0.2% concentration. These results inform the optimization of cooling strategies for automotive components, aiding engineers in designing efficient thermal management systems for heat-sensitive vehicle parts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Thermal Science and Engineering Progress
ISSN
2451-9049
e-ISSN
2451-9049
Svazek periodika
55
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
102993
Kód UT WoS článku
001342747800001
EID výsledku v databázi Scopus
2-s2.0-85207089012