Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Heat transfer characteristics of multiple jet impingements using graphene nanofluid for automobile industry application

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00616617" target="_blank" >RIV/61389021:_____/24:00616617 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22320/24:43930286

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2451904924006115?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2451904924006115?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tsep.2024.102993" target="_blank" >10.1016/j.tsep.2024.102993</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Heat transfer characteristics of multiple jet impingements using graphene nanofluid for automobile industry application

  • Popis výsledku v původním jazyce

    The framework experimentally investigates the application of graphene water Nano fluid nozzles for liquid jet cooling, particularly for internal combustion engine piston cooling. It also explores cooling effectiveness on flat and uneven surfaces (copper, steel, Inconel) with varying thicknesses. Turbulent liquid jets impinge on heated surfaces under constant heat flux using nozzles of different diameters to ensure fully developed flow. Graphene nanofluid concentrations of 0.1%, 0.15%, and 0.2% are compared to water. The impact is analysed for multiple jet arrangements, flow rates, and impingement distances on heat transfer using a combined experimental and numerical approach and findings reveal that higher jet Reynolds numbers, temperature rises, and smaller nozzle-to-plate distances enhance heat transfer. Nanofluid concentration significantly improves heat transfer compared to water, with a maximum increase of 50% at 0.2% concentration. These results inform the optimization of cooling strategies for automotive components, aiding engineers in designing efficient thermal management systems for heat-sensitive vehicle parts.

  • Název v anglickém jazyce

    Heat transfer characteristics of multiple jet impingements using graphene nanofluid for automobile industry application

  • Popis výsledku anglicky

    The framework experimentally investigates the application of graphene water Nano fluid nozzles for liquid jet cooling, particularly for internal combustion engine piston cooling. It also explores cooling effectiveness on flat and uneven surfaces (copper, steel, Inconel) with varying thicknesses. Turbulent liquid jets impinge on heated surfaces under constant heat flux using nozzles of different diameters to ensure fully developed flow. Graphene nanofluid concentrations of 0.1%, 0.15%, and 0.2% are compared to water. The impact is analysed for multiple jet arrangements, flow rates, and impingement distances on heat transfer using a combined experimental and numerical approach and findings reveal that higher jet Reynolds numbers, temperature rises, and smaller nozzle-to-plate distances enhance heat transfer. Nanofluid concentration significantly improves heat transfer compared to water, with a maximum increase of 50% at 0.2% concentration. These results inform the optimization of cooling strategies for automotive components, aiding engineers in designing efficient thermal management systems for heat-sensitive vehicle parts.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Thermal Science and Engineering Progress

  • ISSN

    2451-9049

  • e-ISSN

    2451-9049

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    102993

  • Kód UT WoS článku

    001342747800001

  • EID výsledku v databázi Scopus

    2-s2.0-85207089012