Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimizing BIT1, a Particle-in-Cell Monte Carlo Code, with OpenMP/OpenACC and GPU Acceleration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00616709" target="_blank" >RIV/61389021:_____/24:00616709 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-63749-0_22" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-63749-0_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-63749-0_22" target="_blank" >10.1007/978-3-031-63749-0_22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimizing BIT1, a Particle-in-Cell Monte Carlo Code, with OpenMP/OpenACC and GPU Acceleration

  • Popis výsledku v původním jazyce

    On the path toward developing the first fusion energy devices, plasma simulations have become indispensable tools for supporting the design and development of fusion machines. Among these critical simulation tools, BIT1 is an advanced Particle-in-Cell code with Monte Carlo collisions, specifically designed for modeling plasma-material interaction and, in particular, analyzing the power load distribution on tokamak divertors. The current implementation of BIT1 relies exclusively on MPI for parallel communication and lacks support for GPUs. In this work, we address these limitations by designing and implementing a hybrid, shared-memory version of BIT1 capable of utilizing GPUs. For shared-memory parallelization, we rely on OpenMP and OpenACC, using a task-based approach to mitigate load-imbalance issues in the particle mover. On an HPE Cray EX computing node, we observe an initial performance improvement of approximately 42%, with scalable performance showing an enhancement of about 38% when using 8 MPI ranks. Still relying on OpenMP and OpenACC, we introduce the first version of BIT1 capable of using GPUs. We investigate two different data movement strategies: unified memory and explicit data movement. Overall, we report BIT1 data transfer findings during each PIC cycle. Among BIT1 GPU implementations, we demonstrate performance improvement through concurrent GPU utilization, especially when MPI ranks are assigned to dedicated GPUs. Finally, we analyze the performance of the first BIT1 GPU porting with the NVIDIA Nsight tools to further our understanding of BIT1’s computational efficiency for large-scale plasma simulations, capable of exploiting current supercomputer infrastructures.

  • Název v anglickém jazyce

    Optimizing BIT1, a Particle-in-Cell Monte Carlo Code, with OpenMP/OpenACC and GPU Acceleration

  • Popis výsledku anglicky

    On the path toward developing the first fusion energy devices, plasma simulations have become indispensable tools for supporting the design and development of fusion machines. Among these critical simulation tools, BIT1 is an advanced Particle-in-Cell code with Monte Carlo collisions, specifically designed for modeling plasma-material interaction and, in particular, analyzing the power load distribution on tokamak divertors. The current implementation of BIT1 relies exclusively on MPI for parallel communication and lacks support for GPUs. In this work, we address these limitations by designing and implementing a hybrid, shared-memory version of BIT1 capable of utilizing GPUs. For shared-memory parallelization, we rely on OpenMP and OpenACC, using a task-based approach to mitigate load-imbalance issues in the particle mover. On an HPE Cray EX computing node, we observe an initial performance improvement of approximately 42%, with scalable performance showing an enhancement of about 38% when using 8 MPI ranks. Still relying on OpenMP and OpenACC, we introduce the first version of BIT1 capable of using GPUs. We investigate two different data movement strategies: unified memory and explicit data movement. Overall, we report BIT1 data transfer findings during each PIC cycle. Among BIT1 GPU implementations, we demonstrate performance improvement through concurrent GPU utilization, especially when MPI ranks are assigned to dedicated GPUs. Finally, we analyze the performance of the first BIT1 GPU porting with the NVIDIA Nsight tools to further our understanding of BIT1’s computational efficiency for large-scale plasma simulations, capable of exploiting current supercomputer infrastructures.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computational Science – ICCS 2024

  • ISBN

    978-3-031-63748-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    316-330

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Málaga

  • Datum konání akce

    2. 7. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001279316700022