Electronic nonequilibrium effect in ultrafast-laser-irradiated solids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00617067" target="_blank" >RIV/61389021:_____/24:00617067 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/24:00585129
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1402-4896/ad13df" target="_blank" >https://iopscience.iop.org/article/10.1088/1402-4896/ad13df</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1402-4896/ad13df" target="_blank" >10.1088/1402-4896/ad13df</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electronic nonequilibrium effect in ultrafast-laser-irradiated solids
Popis výsledku v původním jazyce
This paper describes the effects of electronic nonequilibrium in a simulation of ultrafast laser irradiation of materials. The simulation scheme based on tight-binding molecular dynamics, in which the electronic populations are traced with a combined Monte Carlo and Boltzmann equation, enables the modeling of nonequilibrium, nonthermal, and nonadiabatic (electron-phonon coupling) effects simultaneously. The electron-electron thermalization is described within the relaxation-time approximation, which automatically restores various known limits such as instantaneous thermalization (the thermalization time τ e − e → 0 ) and Born-Oppenheimer (BO) approximation ( τ e − e → ∞ ). The results of the simulation suggest that the non-equilibrium state of the electronic system slows down electron-phonon coupling with respect to the electronic equilibrium case in all studied materials: metals, semiconductors, and insulators. In semiconductors and insulators, it also alters the damage threshold of ultrafast nonthermal phase transitions induced by modification of the interatomic potential due to electronic excitation. It is demonstrated that the models that exclude electron-electron thermalization (using the assumption of τ e − e → ∞ , such as BO or Ehrenfest approximations) may produce qualitatively different results, and a reliable model should include all three effects: electronic nonequilibrium, nonadiabatic electron-ion coupling, and nonthermal evolution of interatomic potential.
Název v anglickém jazyce
Electronic nonequilibrium effect in ultrafast-laser-irradiated solids
Popis výsledku anglicky
This paper describes the effects of electronic nonequilibrium in a simulation of ultrafast laser irradiation of materials. The simulation scheme based on tight-binding molecular dynamics, in which the electronic populations are traced with a combined Monte Carlo and Boltzmann equation, enables the modeling of nonequilibrium, nonthermal, and nonadiabatic (electron-phonon coupling) effects simultaneously. The electron-electron thermalization is described within the relaxation-time approximation, which automatically restores various known limits such as instantaneous thermalization (the thermalization time τ e − e → 0 ) and Born-Oppenheimer (BO) approximation ( τ e − e → ∞ ). The results of the simulation suggest that the non-equilibrium state of the electronic system slows down electron-phonon coupling with respect to the electronic equilibrium case in all studied materials: metals, semiconductors, and insulators. In semiconductors and insulators, it also alters the damage threshold of ultrafast nonthermal phase transitions induced by modification of the interatomic potential due to electronic excitation. It is demonstrated that the models that exclude electron-electron thermalization (using the assumption of τ e − e → ∞ , such as BO or Ehrenfest approximations) may produce qualitatively different results, and a reliable model should include all three effects: electronic nonequilibrium, nonadiabatic electron-ion coupling, and nonthermal evolution of interatomic potential.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica Scripta
ISSN
0031-8949
e-ISSN
1402-4896
Svazek periodika
99
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
015934
Kód UT WoS článku
001128694700001
EID výsledku v databázi Scopus
2-s2.0-85180528349