Properties and characteristics of the nanosecond discharge developing at the water–air interface: tracking evolution from a diffused streamer to a spark filament
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00617071" target="_blank" >RIV/61389021:_____/24:00617071 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6595/ad257d" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ad257d</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6595/ad257d" target="_blank" >10.1088/1361-6595/ad257d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Properties and characteristics of the nanosecond discharge developing at the water–air interface: tracking evolution from a diffused streamer to a spark filament
Popis výsledku v původním jazyce
The characteristics of nanosecond discharge propagating along the water–air interface in a unique dielectric-barrier discharge (DBD)-like configuration with coplanar electrodes submerged in deionised (DI)/tap water are studied by combining ultrafast imaging and emission spectra with electrical characteristics. Time-resolved images provide a clear signature of streamer channels excited on the water surface at either side of the blade (insulated plastic separating the anode/cathode) and propagating perpendicularly away from it towards the anode/cathode with different velocities. Later on, the streamer channels convert into a few discrete and bright discharge channels due to ionisation instability (spark phase). There is no distinctive dependence on water conductivity in the streamer phase, as the optical emission spectroscopy and images of discharges only showed an increase of the luminosity and no significant changes in morphology. However, in the spark phase, more numerous, brighter, and thicker filaments form in tap water. The time-resolved emission spectra reveal the dominance of the first and second positive system of N2 molecular bands in the streamer phase, followed by the appearance of atomic lines of hydrogen, nitrogen, and oxygen in the spark phase. The emission spectra are utilised to estimate several important parameters (gas temperature, reduced electric field (E/N), and electron density (ne)). The streamer phase is characterised by a low gas temperature and a peak E/N amplitude between 700 and 850 Td. On the other hand, the subsequent spark phase is characterised by a gas temperature of ∼400/1100 K and a free electron density up to ne ∼ 1017–1018 cm−3 in DI/tap water.
Název v anglickém jazyce
Properties and characteristics of the nanosecond discharge developing at the water–air interface: tracking evolution from a diffused streamer to a spark filament
Popis výsledku anglicky
The characteristics of nanosecond discharge propagating along the water–air interface in a unique dielectric-barrier discharge (DBD)-like configuration with coplanar electrodes submerged in deionised (DI)/tap water are studied by combining ultrafast imaging and emission spectra with electrical characteristics. Time-resolved images provide a clear signature of streamer channels excited on the water surface at either side of the blade (insulated plastic separating the anode/cathode) and propagating perpendicularly away from it towards the anode/cathode with different velocities. Later on, the streamer channels convert into a few discrete and bright discharge channels due to ionisation instability (spark phase). There is no distinctive dependence on water conductivity in the streamer phase, as the optical emission spectroscopy and images of discharges only showed an increase of the luminosity and no significant changes in morphology. However, in the spark phase, more numerous, brighter, and thicker filaments form in tap water. The time-resolved emission spectra reveal the dominance of the first and second positive system of N2 molecular bands in the streamer phase, followed by the appearance of atomic lines of hydrogen, nitrogen, and oxygen in the spark phase. The emission spectra are utilised to estimate several important parameters (gas temperature, reduced electric field (E/N), and electron density (ne)). The streamer phase is characterised by a low gas temperature and a peak E/N amplitude between 700 and 850 Td. On the other hand, the subsequent spark phase is characterised by a gas temperature of ∼400/1100 K and a free electron density up to ne ∼ 1017–1018 cm−3 in DI/tap water.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plasma Sources Science & Technology
ISSN
0963-0252
e-ISSN
1361-6595
Svazek periodika
33
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
025025
Kód UT WoS článku
001170300500001
EID výsledku v databázi Scopus
2-s2.0-85186267302