Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Properties and characteristics of the nanosecond discharge developing at the water–air interface: tracking evolution from a diffused streamer to a spark filament

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00617071" target="_blank" >RIV/61389021:_____/24:00617071 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ad257d" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ad257d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ad257d" target="_blank" >10.1088/1361-6595/ad257d</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Properties and characteristics of the nanosecond discharge developing at the water–air interface: tracking evolution from a diffused streamer to a spark filament

  • Popis výsledku v původním jazyce

    The characteristics of nanosecond discharge propagating along the water–air interface in a unique dielectric-barrier discharge (DBD)-like configuration with coplanar electrodes submerged in deionised (DI)/tap water are studied by combining ultrafast imaging and emission spectra with electrical characteristics. Time-resolved images provide a clear signature of streamer channels excited on the water surface at either side of the blade (insulated plastic separating the anode/cathode) and propagating perpendicularly away from it towards the anode/cathode with different velocities. Later on, the streamer channels convert into a few discrete and bright discharge channels due to ionisation instability (spark phase). There is no distinctive dependence on water conductivity in the streamer phase, as the optical emission spectroscopy and images of discharges only showed an increase of the luminosity and no significant changes in morphology. However, in the spark phase, more numerous, brighter, and thicker filaments form in tap water. The time-resolved emission spectra reveal the dominance of the first and second positive system of N2 molecular bands in the streamer phase, followed by the appearance of atomic lines of hydrogen, nitrogen, and oxygen in the spark phase. The emission spectra are utilised to estimate several important parameters (gas temperature, reduced electric field (E/N), and electron density (ne)). The streamer phase is characterised by a low gas temperature and a peak E/N amplitude between 700 and 850 Td. On the other hand, the subsequent spark phase is characterised by a gas temperature of ∼400/1100 K and a free electron density up to ne ∼ 1017–1018 cm−3 in DI/tap water.

  • Název v anglickém jazyce

    Properties and characteristics of the nanosecond discharge developing at the water–air interface: tracking evolution from a diffused streamer to a spark filament

  • Popis výsledku anglicky

    The characteristics of nanosecond discharge propagating along the water–air interface in a unique dielectric-barrier discharge (DBD)-like configuration with coplanar electrodes submerged in deionised (DI)/tap water are studied by combining ultrafast imaging and emission spectra with electrical characteristics. Time-resolved images provide a clear signature of streamer channels excited on the water surface at either side of the blade (insulated plastic separating the anode/cathode) and propagating perpendicularly away from it towards the anode/cathode with different velocities. Later on, the streamer channels convert into a few discrete and bright discharge channels due to ionisation instability (spark phase). There is no distinctive dependence on water conductivity in the streamer phase, as the optical emission spectroscopy and images of discharges only showed an increase of the luminosity and no significant changes in morphology. However, in the spark phase, more numerous, brighter, and thicker filaments form in tap water. The time-resolved emission spectra reveal the dominance of the first and second positive system of N2 molecular bands in the streamer phase, followed by the appearance of atomic lines of hydrogen, nitrogen, and oxygen in the spark phase. The emission spectra are utilised to estimate several important parameters (gas temperature, reduced electric field (E/N), and electron density (ne)). The streamer phase is characterised by a low gas temperature and a peak E/N amplitude between 700 and 850 Td. On the other hand, the subsequent spark phase is characterised by a gas temperature of ∼400/1100 K and a free electron density up to ne ∼ 1017–1018 cm−3 in DI/tap water.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plasma Sources Science & Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    025025

  • Kód UT WoS článku

    001170300500001

  • EID výsledku v databázi Scopus

    2-s2.0-85186267302