Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exponential Repulsion Improves Structural Predictability of Molecular Docking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F16%3A00467239" target="_blank" >RIV/61389030:_____/16:00467239 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/16:33160156

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/jcc.24473" target="_blank" >http://dx.doi.org/10.1002/jcc.24473</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jcc.24473" target="_blank" >10.1002/jcc.24473</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exponential Repulsion Improves Structural Predictability of Molecular Docking

  • Popis výsledku v původním jazyce

    Molecular docking is a powerful tool for theoretical prediction of the preferred conformation and orientation of small molecules within protein active sites. The obtained poses can be used for estimation of binding energies, which indicate the inhibition effect of designed inhibitors, and therefore might be used for in silico drug design. However, the evaluation of ligand binding affinity critically depends on successful prediction of the native binding mode. Contemporary docking methods are often based on scoring functions derived from molecular mechanical potentials. In such potentials, nonbonded interactions are typically represented by electrostatic interactions between atom-centered partial charges and standard 6-12 Lennard-Jones potential. Here, we present implementation and testing of a scoring function based on more physically justified exponential repulsion instead of the standard Lennard-Jones potential. We found that this scoring function significantly improved prediction of the native binding modes in proteins bearing narrow active sites such as serine proteases and kinases.

  • Název v anglickém jazyce

    Exponential Repulsion Improves Structural Predictability of Molecular Docking

  • Popis výsledku anglicky

    Molecular docking is a powerful tool for theoretical prediction of the preferred conformation and orientation of small molecules within protein active sites. The obtained poses can be used for estimation of binding energies, which indicate the inhibition effect of designed inhibitors, and therefore might be used for in silico drug design. However, the evaluation of ligand binding affinity critically depends on successful prediction of the native binding mode. Contemporary docking methods are often based on scoring functions derived from molecular mechanical potentials. In such potentials, nonbonded interactions are typically represented by electrostatic interactions between atom-centered partial charges and standard 6-12 Lennard-Jones potential. Here, we present implementation and testing of a scoring function based on more physically justified exponential repulsion instead of the standard Lennard-Jones potential. We found that this scoring function significantly improved prediction of the native binding modes in proteins bearing narrow active sites such as serine proteases and kinases.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    CF - Fyzikální chemie a teoretická chemie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computational Chemistry

  • ISSN

    0192-8651

  • e-ISSN

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    28

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    2485-2494

  • Kód UT WoS článku

    000387484200001

  • EID výsledku v databázi Scopus