Genomic prediction in a multiploid crop: Genotype by environment interaction and allele dosage effects on predictive ability in Banana
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F18%3A00497700" target="_blank" >RIV/61389030:_____/18:00497700 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3835/plantgenome2017.10.0090" target="_blank" >http://dx.doi.org/10.3835/plantgenome2017.10.0090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3835/plantgenome2017.10.0090" target="_blank" >10.3835/plantgenome2017.10.0090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genomic prediction in a multiploid crop: Genotype by environment interaction and allele dosage effects on predictive ability in Banana
Popis výsledku v původním jazyce
Improving the efficiency of selection in conventional crossbreeding is a major priority in banana (Musa spp.) breeding. Routine application of classical marker assisted selection (MAS) is lagging in banana due to limitations in MAS tools. Genomic selection (GS) based on genomic prediction models can address some limitations of classical MAS, but the use of GS in banana has not been reported to date. The aim of this study was to evaluate the predictive ability of six genomic prediction models for 15 traits in a multi-ploidy training population. The population consisted of 307 banana genotypes phenotyped under low and high input field management conditions for two crop cycles. The single nucleotide polymorphism (SNP) markers used to fit the models were obtained from genotyping by sequencing (GBS) data. Models that account for additive genetic effects provided better predictions with 12 out of 15 traits. The performance of BayesB model was superior to other models particularly on fruit filling and fruit bunch traits. Models that included averaged environment data were more robust in trait prediction even with a reduced number of markers. Accounting for allele dosage in SNP markers (AD-SNP) reduced predictive ability relative to traditional bi-allelic SNP (BA-SNP), but the prediction trend remained the same across traits. The high predictive values (0.47– 0.75) of fruit filling and fruit bunch traits show the potential of genomic prediction to increase selection efficiency in banana breeding.
Název v anglickém jazyce
Genomic prediction in a multiploid crop: Genotype by environment interaction and allele dosage effects on predictive ability in Banana
Popis výsledku anglicky
Improving the efficiency of selection in conventional crossbreeding is a major priority in banana (Musa spp.) breeding. Routine application of classical marker assisted selection (MAS) is lagging in banana due to limitations in MAS tools. Genomic selection (GS) based on genomic prediction models can address some limitations of classical MAS, but the use of GS in banana has not been reported to date. The aim of this study was to evaluate the predictive ability of six genomic prediction models for 15 traits in a multi-ploidy training population. The population consisted of 307 banana genotypes phenotyped under low and high input field management conditions for two crop cycles. The single nucleotide polymorphism (SNP) markers used to fit the models were obtained from genotyping by sequencing (GBS) data. Models that account for additive genetic effects provided better predictions with 12 out of 15 traits. The performance of BayesB model was superior to other models particularly on fruit filling and fruit bunch traits. Models that included averaged environment data were more robust in trait prediction even with a reduced number of markers. Accounting for allele dosage in SNP markers (AD-SNP) reduced predictive ability relative to traditional bi-allelic SNP (BA-SNP), but the prediction trend remained the same across traits. The high predictive values (0.47– 0.75) of fruit filling and fruit bunch traits show the potential of genomic prediction to increase selection efficiency in banana breeding.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10603 - Genetics and heredity (medical genetics to be 3)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plant Genome
ISSN
1940-3372
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000450929300008
EID výsledku v databázi Scopus
2-s2.0-85049525152