Hotspots in the genomic architecture of field drought responses in wheat as breeding targets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F19%3A00502406" target="_blank" >RIV/61389030:_____/19:00502406 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10142-018-0639-3" target="_blank" >http://dx.doi.org/10.1007/s10142-018-0639-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10142-018-0639-3" target="_blank" >10.1007/s10142-018-0639-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hotspots in the genomic architecture of field drought responses in wheat as breeding targets
Popis výsledku v původním jazyce
Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.
Název v anglickém jazyce
Hotspots in the genomic architecture of field drought responses in wheat as breeding targets
Popis výsledku anglicky
Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10603 - Genetics and heredity (medical genetics to be 3)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUNCTIONAL & INTEGRATIVE GENOMICS
ISSN
1438-793X
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
295-309
Kód UT WoS článku
000459403100007
EID výsledku v databázi Scopus
2-s2.0-85056726066