The Response of Maize to Inoculation withArthrobactersp. andBacillussp. in Phosphorus-Deficient, Salinity-Affected Soil
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F20%3A00532718" target="_blank" >RIV/61389030:_____/20:00532718 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/20:73604908
Výsledek na webu
<a href="http://doi.org/10.3390/microorganisms8071005" target="_blank" >http://doi.org/10.3390/microorganisms8071005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/microorganisms8071005" target="_blank" >10.3390/microorganisms8071005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Response of Maize to Inoculation withArthrobactersp. andBacillussp. in Phosphorus-Deficient, Salinity-Affected Soil
Popis výsledku v původním jazyce
Salinity and phosphorus (P) deficiency are among the most serious soil factors constraining crop productivity. A proposed strategy for alleviating these stresses is supporting plants by inoculation with growth-promoting rhizobacteria (PGPR). Here, a comparison of the ability of two maize composite and two F1 hybrid varieties to tolerate a P deficiency in either a saline or a non-saline environment showed that the uptake of nutrients by all four entries was significantly reduced by the imposition of both soil salinity and P deficiency, and that their growth was compromised to a similar extent. Subsequently, the ameliorative effect of inoculation with three strains of eitherArthrobactersp. orBacillussp. in an environment, which suffered simultaneously from salinity and P deficiency, was investigated. Inoculation with each of the strains was found to limit the plants' uptake of sodium cations, to increase their uptake of potassium cations, and to enhance their growth. The extent of the growth stimulation was more pronounced for the composite varieties than for the F1 hybrid ones, although the amount of biomass accumulated by the latter, whether the plants had been inoculated or not, was greater than that of the former varieties. When the bacterial strains were cultured in vitro, each of them was shown as able to produce the phytohormones auxin, abscisic acid, gibberellins, and cytokinins. The implication is that since the presence in the rhizospere of bothArthrobactersp. andBacillussp. strains can support the growth of maize in salinity-affected and P deficient soils in a genotype-dependent fashion, it is important to not only optimize the PGPR strain used for inoculation, but also to select maize varieties which can benefit most strongly from an association with these bacteria.
Název v anglickém jazyce
The Response of Maize to Inoculation withArthrobactersp. andBacillussp. in Phosphorus-Deficient, Salinity-Affected Soil
Popis výsledku anglicky
Salinity and phosphorus (P) deficiency are among the most serious soil factors constraining crop productivity. A proposed strategy for alleviating these stresses is supporting plants by inoculation with growth-promoting rhizobacteria (PGPR). Here, a comparison of the ability of two maize composite and two F1 hybrid varieties to tolerate a P deficiency in either a saline or a non-saline environment showed that the uptake of nutrients by all four entries was significantly reduced by the imposition of both soil salinity and P deficiency, and that their growth was compromised to a similar extent. Subsequently, the ameliorative effect of inoculation with three strains of eitherArthrobactersp. orBacillussp. in an environment, which suffered simultaneously from salinity and P deficiency, was investigated. Inoculation with each of the strains was found to limit the plants' uptake of sodium cations, to increase their uptake of potassium cations, and to enhance their growth. The extent of the growth stimulation was more pronounced for the composite varieties than for the F1 hybrid ones, although the amount of biomass accumulated by the latter, whether the plants had been inoculated or not, was greater than that of the former varieties. When the bacterial strains were cultured in vitro, each of them was shown as able to produce the phytohormones auxin, abscisic acid, gibberellins, and cytokinins. The implication is that since the presence in the rhizospere of bothArthrobactersp. andBacillussp. strains can support the growth of maize in salinity-affected and P deficient soils in a genotype-dependent fashion, it is important to not only optimize the PGPR strain used for inoculation, but also to select maize varieties which can benefit most strongly from an association with these bacteria.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10609 - Biochemical research methods
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Microorganisms
ISSN
2076-2607
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1005
Kód UT WoS článku
000556751500001
EID výsledku v databázi Scopus
2-s2.0-85090745077