Limited light intensity and low temperature: Can plants survive freezing in light conditions that more accurately replicate the cold season in temperate regions?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F21%3A00551151" target="_blank" >RIV/61389030:_____/21:00551151 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081707:_____/21:00551151 RIV/62156489:43210/21:43919986 RIV/61989592:15310/21:73610707 RIV/00216224:14740/21:00124281
Výsledek na webu
<a href="http://doi.org/10.1016/j.envexpbot.2021.104581" target="_blank" >http://doi.org/10.1016/j.envexpbot.2021.104581</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.envexpbot.2021.104581" target="_blank" >10.1016/j.envexpbot.2021.104581</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Limited light intensity and low temperature: Can plants survive freezing in light conditions that more accurately replicate the cold season in temperate regions?
Popis výsledku v původním jazyce
Plants in temperate regions have evolved mechanisms that enable them to survive sudden temperature drops. Experiments with plants grown in long-day conditions, in which they are most sensitive to freezing stress, indicate that the cold acclimation mechanism is light-dependent and does not fully operate under low light intensity. However, winter annuals like Arabidopsis thaliana Col-0 germinate in the fall, overwinter as rosettes, and thus must acclimate under short photoperiods and low irradiance. Thus, we have analysed effects of variations in light intensity in plants grown under short-day photoperiod at the 1.14 growth stage (14 rosette leaves). Plants were acclimated at 4 °C for seven days under control and limited-light conditions: 100 and 20 μmol m-2s-1 photosynthetic photon flux density (PPFD), respectively. All cold-acclimated plants accumulated molecular markers reportedly associated with acquired freezing tolerance, including proline, sucrose, cold-responsive gene transcripts, dehydrins and low temperature-induced proteins. Observed changes (and similarity of freezing stress survival rates of plants in both light conditions) indicate that low PPFD did not inhibit the cold acclimation process. The molecular analysis identified distinct PPFD-specific adaptation mechanisms manifested in contrasting contents of anthocyanins, cytokinin conjugates, photosystem proteins, and enzymes involved in protein, energy, and reactive oxygen species metabolism. Finally, the results identify putative proteins and metabolite markers correlating with susceptibility to freezing stress of non-acclimated plants grown under low PPFD. Our data show that Arabidopsis plants grown under short-day photoperiods can be fully cold-acclimated under limited light conditions, employing standard and PPFD-specific pathways.
Název v anglickém jazyce
Limited light intensity and low temperature: Can plants survive freezing in light conditions that more accurately replicate the cold season in temperate regions?
Popis výsledku anglicky
Plants in temperate regions have evolved mechanisms that enable them to survive sudden temperature drops. Experiments with plants grown in long-day conditions, in which they are most sensitive to freezing stress, indicate that the cold acclimation mechanism is light-dependent and does not fully operate under low light intensity. However, winter annuals like Arabidopsis thaliana Col-0 germinate in the fall, overwinter as rosettes, and thus must acclimate under short photoperiods and low irradiance. Thus, we have analysed effects of variations in light intensity in plants grown under short-day photoperiod at the 1.14 growth stage (14 rosette leaves). Plants were acclimated at 4 °C for seven days under control and limited-light conditions: 100 and 20 μmol m-2s-1 photosynthetic photon flux density (PPFD), respectively. All cold-acclimated plants accumulated molecular markers reportedly associated with acquired freezing tolerance, including proline, sucrose, cold-responsive gene transcripts, dehydrins and low temperature-induced proteins. Observed changes (and similarity of freezing stress survival rates of plants in both light conditions) indicate that low PPFD did not inhibit the cold acclimation process. The molecular analysis identified distinct PPFD-specific adaptation mechanisms manifested in contrasting contents of anthocyanins, cytokinin conjugates, photosystem proteins, and enzymes involved in protein, energy, and reactive oxygen species metabolism. Finally, the results identify putative proteins and metabolite markers correlating with susceptibility to freezing stress of non-acclimated plants grown under low PPFD. Our data show that Arabidopsis plants grown under short-day photoperiods can be fully cold-acclimated under limited light conditions, employing standard and PPFD-specific pathways.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental and Experimental Botany
ISSN
0098-8472
e-ISSN
1873-7307
Svazek periodika
190
Číslo periodika v rámci svazku
OCT
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
104581
Kód UT WoS článku
000685009900002
EID výsledku v databázi Scopus
2-s2.0-85111347020