Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F21%3A00551741" target="_blank" >RIV/61389030:_____/21:00551741 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60077344:_____/21:00551741 RIV/60461373:22310/21:43922189 RIV/60461373:22330/21:43922189 RIV/60461373:22340/21:43922189
Výsledek na webu
<a href="http://doi.org/10.1016/j.apsoil.2021.104165" target="_blank" >http://doi.org/10.1016/j.apsoil.2021.104165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsoil.2021.104165" target="_blank" >10.1016/j.apsoil.2021.104165</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems
Popis výsledku v původním jazyce
Silver and silver nanoparticles (AgNPs) are extensively used as antimicrobial agents in various products and consequently enter the soil ecosystem, in which they accumulate and can have adverse effects on above and belowground organisms. Since the composition of the soil microbiome could have a significant impact on soil fertility, we focused, in this study, on the effect of AgNPs on soil microbial communities. We evaluated the biomass, plant growth-promoting activities, and microbial genetic (taxonomical) and functional diversity in the soil and the “soil-plant” system using chemical, microbiological, and molecular biological methods, especially qPCR, RFLP, and REP-PCR. By compiling the results of the applied assays, we were able to correlate the changes in genetic diversity with the changes in functional diversity and their impact on the composition of soil organic matter. The effect of AgNPs was predominantly dose-dependent, whereas the concentration 100 mg kgdw−1 had the highest effect on all followed parameters. From the taxonomical point of view, AgNPs had the most significant impact on the relative abundance of Bacteroidetes, which increased in a dose-dependent manner, and Firmicutes, which decreased in a dose-dependent manner, and they caused the predominance of Ascomycota among Fungi. These changes in taxonomic diversity result in a significant decrease in the functional diversity of the microbial communities. Especially for the concentration 100 mg kgdw−1, we detected a significant decrease in the ability of the microbial community to utilize simple carbon substrates, determined by Biolog EcoPlates. We detected also a significant alteration in enzyme activity. The activity of enzymes responsible for depolymerization of complex organic matter was in a dose-dependent manner increased, whereas the highest activity reach samples amended with AgNPs at 100 mg kgdw−1. All these changes result in the accumulation of simple organic matter, which could increase osmotic pressure and have severe consequences on soil fertility. In amended soils, we detected alterations of activity of plant growth-promoting bacteria, specifically in the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase, and siderophores. All these activities are related to mitigating abiotic stress. The presence of plants in experimental soil had both a mitigating and deepening effect on the toxicity of AgNPs. Both effects probably relate to the influence of AgNPs on the selection of different microbial communities in the soil and the “soil-plant” system.
Název v anglickém jazyce
Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems
Popis výsledku anglicky
Silver and silver nanoparticles (AgNPs) are extensively used as antimicrobial agents in various products and consequently enter the soil ecosystem, in which they accumulate and can have adverse effects on above and belowground organisms. Since the composition of the soil microbiome could have a significant impact on soil fertility, we focused, in this study, on the effect of AgNPs on soil microbial communities. We evaluated the biomass, plant growth-promoting activities, and microbial genetic (taxonomical) and functional diversity in the soil and the “soil-plant” system using chemical, microbiological, and molecular biological methods, especially qPCR, RFLP, and REP-PCR. By compiling the results of the applied assays, we were able to correlate the changes in genetic diversity with the changes in functional diversity and their impact on the composition of soil organic matter. The effect of AgNPs was predominantly dose-dependent, whereas the concentration 100 mg kgdw−1 had the highest effect on all followed parameters. From the taxonomical point of view, AgNPs had the most significant impact on the relative abundance of Bacteroidetes, which increased in a dose-dependent manner, and Firmicutes, which decreased in a dose-dependent manner, and they caused the predominance of Ascomycota among Fungi. These changes in taxonomic diversity result in a significant decrease in the functional diversity of the microbial communities. Especially for the concentration 100 mg kgdw−1, we detected a significant decrease in the ability of the microbial community to utilize simple carbon substrates, determined by Biolog EcoPlates. We detected also a significant alteration in enzyme activity. The activity of enzymes responsible for depolymerization of complex organic matter was in a dose-dependent manner increased, whereas the highest activity reach samples amended with AgNPs at 100 mg kgdw−1. All these changes result in the accumulation of simple organic matter, which could increase osmotic pressure and have severe consequences on soil fertility. In amended soils, we detected alterations of activity of plant growth-promoting bacteria, specifically in the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase, and siderophores. All these activities are related to mitigating abiotic stress. The presence of plants in experimental soil had both a mitigating and deepening effect on the toxicity of AgNPs. Both effects probably relate to the influence of AgNPs on the selection of different microbial communities in the soil and the “soil-plant” system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10609 - Biochemical research methods
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soil Ecology
ISSN
0929-1393
e-ISSN
1873-0272
Svazek periodika
168
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
104165
Kód UT WoS článku
000701814300011
EID výsledku v databázi Scopus
2-s2.0-85111215605