Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Associations between air pollution in the industrial and suburban parts of Ostrava city and their use

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17110%2F17%3AA1801TPG" target="_blank" >RIV/61988987:17110/17:A1801TPG - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007%2Fs10661-017-6094-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs10661-017-6094-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10661-017-6094-0" target="_blank" >10.1007/s10661-017-6094-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Associations between air pollution in the industrial and suburban parts of Ostrava city and their use

  • Popis výsledku v původním jazyce

    Selecting the locations and numbers of air quality monitoring stations is challenging as these are expensive to operate. Representative concentrations of pollutants in certain areas are usually determined by measuring. If there are significant correlations with concentrations of other pollutants or with other monitoring sites, however, concentrations could also be computed, partly reducing the costs. The aim of this study is to provide an overview of such possible relationships using data on concentrations of ambient air pollutants obtained in different areas of a larger city. Presented are associations between industrial (IP) and suburban parts (SP) as well as correlations between concentrations of various pollutants at the same site. Results of air pollutant monitoring come from Ostrava, an industrial city in Central Europe with a population of over 300,000. The study showed that certain pollutants were strongly correlated, especially particulate matter (r = 0.940) and ozone (r = 0.923) between the IP and SP. Statistically significant correlations were also found between different pollutants at the same site. The highest correlations were between PM10 and NO2 (rIP = 0.728; rSP = 0.734), NO2 and benzo(a)pyrene (rIP = 0.787; rSP = 0.697), and NO2 and ozone (rIP = -0.706; rSP = -0.686). This could contribute to more cost-effective solutions for air pollution monitoring in cities and their surroundings by using computational models based on the correlations, optimization of the network of monitoring stations, and the best selection of measuring devices.

  • Název v anglickém jazyce

    Associations between air pollution in the industrial and suburban parts of Ostrava city and their use

  • Popis výsledku anglicky

    Selecting the locations and numbers of air quality monitoring stations is challenging as these are expensive to operate. Representative concentrations of pollutants in certain areas are usually determined by measuring. If there are significant correlations with concentrations of other pollutants or with other monitoring sites, however, concentrations could also be computed, partly reducing the costs. The aim of this study is to provide an overview of such possible relationships using data on concentrations of ambient air pollutants obtained in different areas of a larger city. Presented are associations between industrial (IP) and suburban parts (SP) as well as correlations between concentrations of various pollutants at the same site. Results of air pollutant monitoring come from Ostrava, an industrial city in Central Europe with a population of over 300,000. The study showed that certain pollutants were strongly correlated, especially particulate matter (r = 0.940) and ozone (r = 0.923) between the IP and SP. Statistically significant correlations were also found between different pollutants at the same site. The highest correlations were between PM10 and NO2 (rIP = 0.728; rSP = 0.734), NO2 and benzo(a)pyrene (rIP = 0.787; rSP = 0.697), and NO2 and ozone (rIP = -0.706; rSP = -0.686). This could contribute to more cost-effective solutions for air pollution monitoring in cities and their surroundings by using computational models based on the correlations, optimization of the network of monitoring stations, and the best selection of measuring devices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30304 - Public and environmental health

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Environmental Monitoiring and Assesment

  • ISSN

    0167-6369

  • e-ISSN

    1573-2959

  • Svazek periodika

    189

  • Číslo periodika v rámci svazku

    381

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000405440300020

  • EID výsledku v databázi Scopus

    2-s2.0-85022024228