A comparative study to evolutionary algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501BBE" target="_blank" >RIV/61988987:17310/14:A1501BBE - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study to evolutionary algorithms
Popis výsledku v původním jazyce
Evolutionary algorithms are general iterative algorithms for combinatorial optimization. The term evolutionary algorithm is used to refer to any probabilistic algorithm whose design is inspired by evolutionary mechanisms found in biological species. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. In this paper we perform a comparative study among Genetic Algorithms (GA), Simulated Annealing (SA), Differential Evolution (DE), and Self Organising Migrating Algorithms (SOMA). These algorithms have many similarities, but they also possess distinctive features, mainly in their strategies for searching the solution state space. The four heuristics are applied on the sameoptimization problem - Travelling Salesman Problem (TSP) and compared with respect to (1) quality of the best solution identi?ed by each heuristic, (2) progress of the search from an initial solution until stopping criteria are met.
Název v anglickém jazyce
A comparative study to evolutionary algorithms
Popis výsledku anglicky
Evolutionary algorithms are general iterative algorithms for combinatorial optimization. The term evolutionary algorithm is used to refer to any probabilistic algorithm whose design is inspired by evolutionary mechanisms found in biological species. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. In this paper we perform a comparative study among Genetic Algorithms (GA), Simulated Annealing (SA), Differential Evolution (DE), and Self Organising Migrating Algorithms (SOMA). These algorithms have many similarities, but they also possess distinctive features, mainly in their strategies for searching the solution state space. The four heuristics are applied on the sameoptimization problem - Travelling Salesman Problem (TSP) and compared with respect to (1) quality of the best solution identi?ed by each heuristic, (2) progress of the search from an initial solution until stopping criteria are met.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS 28th European Conference on Modelling and Simulation ECMS 2014
ISBN
978-0-9564944-8-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
340-345
Název nakladatele
European Council for Modelling and Simulation
Místo vydání
Sbr.-Dudweiler, Germany
Místo konání akce
Brescia, Italy
Datum konání akce
27. 5. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—