Boosting of Neural Networks over MNIST Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501BXG" target="_blank" >RIV/61988987:17310/14:A1501BXG - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boosting of Neural Networks over MNIST Data
Popis výsledku v původním jazyce
The methods proposed in the article come out from a technique called boosting, which is based on the principle of combining a large number of so-called weak classifiers into a strong classifier. The article is focused on the possibility of increasing theefficiency of the algorithms via their appropriate combination, and particularly increasing their reliability and reducing their time exigency. Time exigency does not mean time exigency of the algorithm itself, nor its development, but time exigency ofapplying the algorithm to a particular problem domain. Simulations and experiments of the proposed processes were performed in the designed and created application environment. Experiments have been conducted over the MNIST database of handwritten digitsthat is commonly used for training and testing in the field of machine learning. Finally, a comparative experimental study with other approaches is presented. All achieved results are summarized in a conclusion.
Název v anglickém jazyce
Boosting of Neural Networks over MNIST Data
Popis výsledku anglicky
The methods proposed in the article come out from a technique called boosting, which is based on the principle of combining a large number of so-called weak classifiers into a strong classifier. The article is focused on the possibility of increasing theefficiency of the algorithms via their appropriate combination, and particularly increasing their reliability and reducing their time exigency. Time exigency does not mean time exigency of the algorithm itself, nor its development, but time exigency ofapplying the algorithm to a particular problem domain. Simulations and experiments of the proposed processes were performed in the designed and created application environment. Experiments have been conducted over the MNIST database of handwritten digitsthat is commonly used for training and testing in the field of machine learning. Finally, a comparative experimental study with other approaches is presented. All achieved results are summarized in a conclusion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference on Neural Computation Theory and Applications
ISBN
978-989-758-054-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
256-263
Název nakladatele
INSTICC Press
Místo vydání
Portugal
Místo konání akce
Rome, Italy
Datum konání akce
22. 10. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—