Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

How many are equiaffine connections with torsion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F15%3AA1601G3H" target="_blank" >RIV/61988987:17310/15:A1601G3H - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    How many are equiaffine connections with torsion

  • Popis výsledku v původním jazyce

    The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables.

  • Název v anglickém jazyce

    How many are equiaffine connections with torsion

  • Popis výsledku anglicky

    The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-02476S" target="_blank" >GA14-02476S: Variace, geometrie a fyzika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Archivum Mathematicum

  • ISSN

    1212-5059

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    7

  • Strana od-do

    265-271

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus