Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recognition of Patterns with Fractal Structure in Time Series

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701IGT" target="_blank" >RIV/61988987:17310/16:A1701IGT - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recognition of Patterns with Fractal Structure in Time Series

  • Popis výsledku v původním jazyce

    The chapter is focused on an analysis and pattern recognition in time series, which are fractal in nature. Our goal is to find and recognize important Elliott wave patterns which repeatedly appear in the market history for the purpose of prediction of subsequent trader?s action. The pattern recognition approach is based on neural networks. Artificial neural networks are suitable for pattern recognition in time series mainly because of learning only from examples. This chapter introduces a methodology that allows analysis of Elliot wave?s patterns in time series for the purpose of a trend prediction. The functionality of the proposed methodology was validated in experimental simulations, for whose implementation was designed and created an application environment. In conclusion, all results were evaluated and compared with each other. This chapter is composed only from our published works that present our proposed methodology. We see the main contribution of this chapter in its range, which allows us to present all our published works concerning our proposed methodology together.

  • Název v anglickém jazyce

    Recognition of Patterns with Fractal Structure in Time Series

  • Popis výsledku anglicky

    The chapter is focused on an analysis and pattern recognition in time series, which are fractal in nature. Our goal is to find and recognize important Elliott wave patterns which repeatedly appear in the market history for the purpose of prediction of subsequent trader?s action. The pattern recognition approach is based on neural networks. Artificial neural networks are suitable for pattern recognition in time series mainly because of learning only from examples. This chapter introduces a methodology that allows analysis of Elliot wave?s patterns in time series for the purpose of a trend prediction. The functionality of the proposed methodology was validated in experimental simulations, for whose implementation was designed and created an application environment. In conclusion, all results were evaluated and compared with each other. This chapter is composed only from our published works that present our proposed methodology. We see the main contribution of this chapter in its range, which allows us to present all our published works concerning our proposed methodology together.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Pattern Recognition and Classification in Time Series Data

  • ISBN

    978-1-5225-0565-5

  • Počet stran výsledku

    31

  • Strana od-do

    1-31

  • Počet stran knihy

    282

  • Název nakladatele

    IGI Global

  • Místo vydání

    USA

  • Kód UT WoS kapitoly