Recognition of Patterns with Fractal Structure in Time Series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701IGT" target="_blank" >RIV/61988987:17310/16:A1701IGT - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of Patterns with Fractal Structure in Time Series
Popis výsledku v původním jazyce
The chapter is focused on an analysis and pattern recognition in time series, which are fractal in nature. Our goal is to find and recognize important Elliott wave patterns which repeatedly appear in the market history for the purpose of prediction of subsequent trader?s action. The pattern recognition approach is based on neural networks. Artificial neural networks are suitable for pattern recognition in time series mainly because of learning only from examples. This chapter introduces a methodology that allows analysis of Elliot wave?s patterns in time series for the purpose of a trend prediction. The functionality of the proposed methodology was validated in experimental simulations, for whose implementation was designed and created an application environment. In conclusion, all results were evaluated and compared with each other. This chapter is composed only from our published works that present our proposed methodology. We see the main contribution of this chapter in its range, which allows us to present all our published works concerning our proposed methodology together.
Název v anglickém jazyce
Recognition of Patterns with Fractal Structure in Time Series
Popis výsledku anglicky
The chapter is focused on an analysis and pattern recognition in time series, which are fractal in nature. Our goal is to find and recognize important Elliott wave patterns which repeatedly appear in the market history for the purpose of prediction of subsequent trader?s action. The pattern recognition approach is based on neural networks. Artificial neural networks are suitable for pattern recognition in time series mainly because of learning only from examples. This chapter introduces a methodology that allows analysis of Elliot wave?s patterns in time series for the purpose of a trend prediction. The functionality of the proposed methodology was validated in experimental simulations, for whose implementation was designed and created an application environment. In conclusion, all results were evaluated and compared with each other. This chapter is composed only from our published works that present our proposed methodology. We see the main contribution of this chapter in its range, which allows us to present all our published works concerning our proposed methodology together.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Pattern Recognition and Classification in Time Series Data
ISBN
978-1-5225-0565-5
Počet stran výsledku
31
Strana od-do
1-31
Počet stran knihy
282
Název nakladatele
IGI Global
Místo vydání
USA
Kód UT WoS kapitoly
—