Complex causes of landslides after ice sheet retreat: Post-LGM mass movements in the Northern Patagonian Icefield region
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA22028JP" target="_blank" >RIV/61988987:17310/21:A22028JP - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0048969720372156" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969720372156</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2020.143684" target="_blank" >10.1016/j.scitotenv.2020.143684</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complex causes of landslides after ice sheet retreat: Post-LGM mass movements in the Northern Patagonian Icefield region
Popis výsledku v původním jazyce
Although the dynamics of individual rock-slope failures above recently shrinking glaciers have received increasing study, less is known about the spatial distribution of landslides in paraglacial settings. Here, we present a landslide inventory for large deglaciated area (~100,000 km2) situated within the Last Glacial Maximum (LGM) limits of the Northern Patagonian Icefield (NPI). Using satellite images and the TanDEM-X digital elevation model, we mapped a total of 15,543 landslides, among which 1006 are deep-seated landslides (DSLs) with area ≥0.01 km2. The distribution of DSLs is highly asymmetric in a W-E transect of the NPI region, with pronounced clustering along the semi-arid eastern front of the Patagonian Andes. The most strongly affected domain is volcanic tablelands overlying weak Miocene sedimentary rocks, but DSLs tend to also cluster along recently deglaciated (i.e. since the end of the 19th century) eastern margin of the NPI. Compared with other high mountain regions, alpine valleys of the Patagonian Andes are affected by DSLs only in <1% of their area, an order of magnitude lower than in other reported deglaciated mountains. The modest incidence of DSLs in the Patagonian Andes is due to dominance of hard granitoid rocks and relatively weak historical seismic activity. We conclude that 1) geological conditions control the distribution of DSLs and their types in the NPI region; 2) paraglacial effects play secondary (although locally important) roles in the origin of DSLs; 3) local clusters of large DSLs originate due to specifics of the post-LGM landscape evolution, involving drawdowns of glacial lakes and incision of rivers into the unconsolidated deposits; and 4) increased abundance of landslides above the recently shrinking margin of the NPI results from the repeated Holocene fluctuations of glacier snouts around the Little Ice Age (LIA) glacier limits and the spatial coincidence of glacial debuttressing effects with the presence of active faults.
Název v anglickém jazyce
Complex causes of landslides after ice sheet retreat: Post-LGM mass movements in the Northern Patagonian Icefield region
Popis výsledku anglicky
Although the dynamics of individual rock-slope failures above recently shrinking glaciers have received increasing study, less is known about the spatial distribution of landslides in paraglacial settings. Here, we present a landslide inventory for large deglaciated area (~100,000 km2) situated within the Last Glacial Maximum (LGM) limits of the Northern Patagonian Icefield (NPI). Using satellite images and the TanDEM-X digital elevation model, we mapped a total of 15,543 landslides, among which 1006 are deep-seated landslides (DSLs) with area ≥0.01 km2. The distribution of DSLs is highly asymmetric in a W-E transect of the NPI region, with pronounced clustering along the semi-arid eastern front of the Patagonian Andes. The most strongly affected domain is volcanic tablelands overlying weak Miocene sedimentary rocks, but DSLs tend to also cluster along recently deglaciated (i.e. since the end of the 19th century) eastern margin of the NPI. Compared with other high mountain regions, alpine valleys of the Patagonian Andes are affected by DSLs only in <1% of their area, an order of magnitude lower than in other reported deglaciated mountains. The modest incidence of DSLs in the Patagonian Andes is due to dominance of hard granitoid rocks and relatively weak historical seismic activity. We conclude that 1) geological conditions control the distribution of DSLs and their types in the NPI region; 2) paraglacial effects play secondary (although locally important) roles in the origin of DSLs; 3) local clusters of large DSLs originate due to specifics of the post-LGM landscape evolution, involving drawdowns of glacial lakes and incision of rivers into the unconsolidated deposits; and 4) increased abundance of landslides above the recently shrinking margin of the NPI results from the repeated Holocene fluctuations of glacier snouts around the Little Ice Age (LIA) glacier limits and the spatial coincidence of glacial debuttressing effects with the presence of active faults.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16013S" target="_blank" >GA19-16013S: Obří sesuvy na předpolí ledovců: chybějící část příběhu vývoje Patagonského ledovcového štítu a přilehlých ledovcových jezer</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SCI TOTAL ENVIRON
ISSN
0048-9697
e-ISSN
1879-1026
Svazek periodika
758
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
143684
Kód UT WoS článku
000605623800088
EID výsledku v databázi Scopus
2-s2.0-85097393899