Using honeynet data and a time series to predict the number of cyber attacks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202A72" target="_blank" >RIV/61988987:17310/21:A2202A72 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02142100040Z" target="_blank" >http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02142100040Z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/CSIS200715040Z" target="_blank" >10.2298/CSIS200715040Z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using honeynet data and a time series to predict the number of cyber attacks
Popis výsledku v původním jazyce
A large number of cyber attacks are commonly conducted against home computers, mobile7devices, as well as servers providing various services. One such prominently attacked service, or a pro-8tocol in this case, is the Secure Shell (SSH) used to gain remote access to manage systems. Besides hu-9man attackers, botnets are a major source of attacks on SSH servers. Tools such as honeypots allow an10effective means of recording and analysing such attacks.However, is it also possible to use them to ef-11fectively predict these attacks? The prediction of SSH attacks, specifically the prediction of activity on12certain subjects, such as autonomous systems, will be beneficial to system administrators, internet ser-13vice providers, and CSIRT teams. This article presents multiple methods for using a time series, based14on real-world data,to predict these attacks. It focuses on the overall prediction of attacks on the hon-15eynet and the prediction of attacks from specific geographical regions. Multiple approaches are used,16such as ARIMA, SARIMA, GARCH, and Bootstrapping. The article presents the viability, precision and17usefulness of the individual approaches for various areas of IT security.
Název v anglickém jazyce
Using honeynet data and a time series to predict the number of cyber attacks
Popis výsledku anglicky
A large number of cyber attacks are commonly conducted against home computers, mobile7devices, as well as servers providing various services. One such prominently attacked service, or a pro-8tocol in this case, is the Secure Shell (SSH) used to gain remote access to manage systems. Besides hu-9man attackers, botnets are a major source of attacks on SSH servers. Tools such as honeypots allow an10effective means of recording and analysing such attacks.However, is it also possible to use them to ef-11fectively predict these attacks? The prediction of SSH attacks, specifically the prediction of activity on12certain subjects, such as autonomous systems, will be beneficial to system administrators, internet ser-13vice providers, and CSIRT teams. This article presents multiple methods for using a time series, based14on real-world data,to predict these attacks. It focuses on the overall prediction of attacks on the hon-15eynet and the prediction of attacks from specific geographical regions. Multiple approaches are used,16such as ARIMA, SARIMA, GARCH, and Bootstrapping. The article presents the viability, precision and17usefulness of the individual approaches for various areas of IT security.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Science and Information Systems
ISSN
1820-0214
e-ISSN
2406-1018
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
RS - Srbská republika
Počet stran výsledku
17
Strana od-do
1197-1217
Kód UT WoS článku
000718010500006
EID výsledku v databázi Scopus
2-s2.0-85118940819