Neural Network Modelling for Prediction of Zeta Potential
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202BOF" target="_blank" >RIV/61988987:17310/21:A2202BOF - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/9/23/3089" target="_blank" >https://www.mdpi.com/2227-7390/9/23/3089</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9233089" target="_blank" >10.3390/math9233089</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Network Modelling for Prediction of Zeta Potential
Popis výsledku v původním jazyce
The study is focused on monitoring the influence of selected parameters on the zeta potential values of titanium dioxide nanoparticles. The influence of pH, temperature, ionic strength, and mass content of titanium dioxide in the suspension was assessed. More than a thousand samples were measured by combining these variables. On the basis of results, the model of artificial neural network was proposed and tested. The authors have rich experiences with neural networks applications and this case shows that the neural network model works with a very high prediction success rate of zeta potential. Clearly, pH has the greatest effect on zeta potential values. The influence of other variables is not so significant. However, it can be said that increasing temperature results in an increase in the value of the zeta potential of titanium dioxide nanoparticles. The ionic force affects the zeta potential depending on the pH; in the vicinity of the isoelectric point, its effect is negligible. The effect of the mass content of titanium dioxide in the suspension is absolutely minor.
Název v anglickém jazyce
Neural Network Modelling for Prediction of Zeta Potential
Popis výsledku anglicky
The study is focused on monitoring the influence of selected parameters on the zeta potential values of titanium dioxide nanoparticles. The influence of pH, temperature, ionic strength, and mass content of titanium dioxide in the suspension was assessed. More than a thousand samples were measured by combining these variables. On the basis of results, the model of artificial neural network was proposed and tested. The authors have rich experiences with neural networks applications and this case shows that the neural network model works with a very high prediction success rate of zeta potential. Clearly, pH has the greatest effect on zeta potential values. The influence of other variables is not so significant. However, it can be said that increasing temperature results in an increase in the value of the zeta potential of titanium dioxide nanoparticles. The ionic force affects the zeta potential depending on the pH; in the vicinity of the isoelectric point, its effect is negligible. The effect of the mass content of titanium dioxide in the suspension is absolutely minor.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
9
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
3089-3111
Kód UT WoS článku
000734544200001
EID výsledku v databázi Scopus
2-s2.0-85120413557