Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Network Modelling for Prediction of Zeta Potential

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202BOF" target="_blank" >RIV/61988987:17310/21:A2202BOF - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/9/23/3089" target="_blank" >https://www.mdpi.com/2227-7390/9/23/3089</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math9233089" target="_blank" >10.3390/math9233089</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Network Modelling for Prediction of Zeta Potential

  • Popis výsledku v původním jazyce

    The study is focused on monitoring the influence of selected parameters on the zeta potential values of titanium dioxide nanoparticles. The influence of pH, temperature, ionic strength, and mass content of titanium dioxide in the suspension was assessed. More than a thousand samples were measured by combining these variables. On the basis of results, the model of artificial neural network was proposed and tested. The authors have rich experiences with neural networks applications and this case shows that the neural network model works with a very high prediction success rate of zeta potential. Clearly, pH has the greatest effect on zeta potential values. The influence of other variables is not so significant. However, it can be said that increasing temperature results in an increase in the value of the zeta potential of titanium dioxide nanoparticles. The ionic force affects the zeta potential depending on the pH; in the vicinity of the isoelectric point, its effect is negligible. The effect of the mass content of titanium dioxide in the suspension is absolutely minor.

  • Název v anglickém jazyce

    Neural Network Modelling for Prediction of Zeta Potential

  • Popis výsledku anglicky

    The study is focused on monitoring the influence of selected parameters on the zeta potential values of titanium dioxide nanoparticles. The influence of pH, temperature, ionic strength, and mass content of titanium dioxide in the suspension was assessed. More than a thousand samples were measured by combining these variables. On the basis of results, the model of artificial neural network was proposed and tested. The authors have rich experiences with neural networks applications and this case shows that the neural network model works with a very high prediction success rate of zeta potential. Clearly, pH has the greatest effect on zeta potential values. The influence of other variables is not so significant. However, it can be said that increasing temperature results in an increase in the value of the zeta potential of titanium dioxide nanoparticles. The ionic force affects the zeta potential depending on the pH; in the vicinity of the isoelectric point, its effect is negligible. The effect of the mass content of titanium dioxide in the suspension is absolutely minor.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    3089-3111

  • Kód UT WoS článku

    000734544200001

  • EID výsledku v databázi Scopus

    2-s2.0-85120413557