Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Low-topography deep-seated gravitational slope deformation: slope instability of flysch thrust fronts (Outer Western Carpathians)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202DZP" target="_blank" >RIV/61988987:17310/21:A2202DZP - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0169555X21002415" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169555X21002415</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomorph.2021.107833" target="_blank" >10.1016/j.geomorph.2021.107833</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Low-topography deep-seated gravitational slope deformation: slope instability of flysch thrust fronts (Outer Western Carpathians)

  • Popis výsledku v původním jazyce

    Unlike high-relief mountain areas, low-relief hilly landscapes are usually rarely affected by deep-seated gravitational slope deformations (DSGSDs). However, low-topography flysch thrust fronts can create suitable structural conditions for DSGSDs. The study area of the Kavalčanky ridge represents a relatively low-lying (<120 m of local relief) DSGSD-affected ridge situated at the thrust front in the flysch Outer Western Carpathians (Czech Republic). With the aim of revealing the main controlling factors and temporal constraints of mass-movement activity, a multidisciplinary investigation of DSGSDs was performed. Typical DSGSD landforms were mapped using highresolution LiDAR-based mapping. Structural analysis revealed the presence of specific flysch thrust structural conditions with competent sandstone units overthrusted on a weak tectonically disrupted claystone basement. Geophysical measurement with the use of electrical resistivity tomography (ERT) and ground penetrating radar (GPR) profiling confirmed the deep reach (>50 m) of the studied DSGSD. Together with slope stability finite element modelling, geophysics suggests that the shear zone of DSGSDs is represented by one of the thrust faults, whereas lateral limits are formed by a set of conjugate strike-slip faults. Radiocarbon dating of bogs within the DSGSD body showed two phases of mass-movement activity corresponding to the Late GlacialHolocene transition and Middle Holocene. The recent activity was excluded by dendrogeomorphic analysis. We concluded that the structural conditions involving high lithological complexity, tectonic weakening and the presence of major tectonic contacts might create conditions prone to DSGSDs even in relatively low-topography settings with mass movement activity, especially during humid and warmer Late Quaternary periods.

  • Název v anglickém jazyce

    Low-topography deep-seated gravitational slope deformation: slope instability of flysch thrust fronts (Outer Western Carpathians)

  • Popis výsledku anglicky

    Unlike high-relief mountain areas, low-relief hilly landscapes are usually rarely affected by deep-seated gravitational slope deformations (DSGSDs). However, low-topography flysch thrust fronts can create suitable structural conditions for DSGSDs. The study area of the Kavalčanky ridge represents a relatively low-lying (<120 m of local relief) DSGSD-affected ridge situated at the thrust front in the flysch Outer Western Carpathians (Czech Republic). With the aim of revealing the main controlling factors and temporal constraints of mass-movement activity, a multidisciplinary investigation of DSGSDs was performed. Typical DSGSD landforms were mapped using highresolution LiDAR-based mapping. Structural analysis revealed the presence of specific flysch thrust structural conditions with competent sandstone units overthrusted on a weak tectonically disrupted claystone basement. Geophysical measurement with the use of electrical resistivity tomography (ERT) and ground penetrating radar (GPR) profiling confirmed the deep reach (>50 m) of the studied DSGSD. Together with slope stability finite element modelling, geophysics suggests that the shear zone of DSGSDs is represented by one of the thrust faults, whereas lateral limits are formed by a set of conjugate strike-slip faults. Radiocarbon dating of bogs within the DSGSD body showed two phases of mass-movement activity corresponding to the Late GlacialHolocene transition and Middle Holocene. The recent activity was excluded by dendrogeomorphic analysis. We concluded that the structural conditions involving high lithological complexity, tectonic weakening and the presence of major tectonic contacts might create conditions prone to DSGSDs even in relatively low-topography settings with mass movement activity, especially during humid and warmer Late Quaternary periods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    GEOMORPHOLOGY

  • ISSN

    0169-555X

  • e-ISSN

  • Svazek periodika

    389

  • Číslo periodika v rámci svazku

    2021

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    000685970700006

  • EID výsledku v databázi Scopus

    2-s2.0-85111047067