FOREX rate prediction improved by Elliott waves patterns based on neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302C3J" target="_blank" >RIV/61988987:17310/22:A2302C3J - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0893608021004251?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0893608021004251?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2021.10.024" target="_blank" >10.1016/j.neunet.2021.10.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FOREX rate prediction improved by Elliott waves patterns based on neural networks
Popis výsledku v původním jazyce
Financial market predictions represent a complex problem. Most prediction systems work with the term time window, which is represented by exchange rate values of a real financial commodity. Such values (time window) provide the base for prediction of future values. Real situations, however, prove that prediction of only a single time-series trend is insufficient. This article aims at suggesting a novelty and unconventional approach based on the use of several neural networks predicting probable courses of a future trend defined in a prediction time window. The basis of the proposed approach is a suitable representation of the training-set input data into the neural networks. It uses selected FFT coefficients as well as robust output indicators based on a histogram of the predicted course of the selected currency pair. At the same time, the given currency pair enters the prediction in a combination with another three mutually interconnected currency pairs. A significant output of the articles is, apart from the proposed methodology, confirmation that the Elliott wave theory is beneficial in the trading environment and provides a substantial profit compared with conventional prediction techniques. That was proved in the performed experimental study.
Název v anglickém jazyce
FOREX rate prediction improved by Elliott waves patterns based on neural networks
Popis výsledku anglicky
Financial market predictions represent a complex problem. Most prediction systems work with the term time window, which is represented by exchange rate values of a real financial commodity. Such values (time window) provide the base for prediction of future values. Real situations, however, prove that prediction of only a single time-series trend is insufficient. This article aims at suggesting a novelty and unconventional approach based on the use of several neural networks predicting probable courses of a future trend defined in a prediction time window. The basis of the proposed approach is a suitable representation of the training-set input data into the neural networks. It uses selected FFT coefficients as well as robust output indicators based on a histogram of the predicted course of the selected currency pair. At the same time, the given currency pair enters the prediction in a combination with another three mutually interconnected currency pairs. A significant output of the articles is, apart from the proposed methodology, confirmation that the Elliott wave theory is beneficial in the trading environment and provides a substantial profit compared with conventional prediction techniques. That was proved in the performed experimental study.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEURAL NETWORKS
ISSN
0893-6080
e-ISSN
1879-2782
Svazek periodika
—
Číslo periodika v rámci svazku
January 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
342-355
Kód UT WoS článku
000729932000007
EID výsledku v databázi Scopus
2-s2.0-85119286314