Thickness-controlled porous hexagonal NiO nanodiscs electrodes for use in supercapacitors: How nanodiscs thickness influences electrochemical performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302F6T" target="_blank" >RIV/61988987:17310/22:A2302F6T - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352152X2200353X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352152X2200353X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2022.104329" target="_blank" >10.1016/j.est.2022.104329</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thickness-controlled porous hexagonal NiO nanodiscs electrodes for use in supercapacitors: How nanodiscs thickness influences electrochemical performance
Popis výsledku v původním jazyce
Two-dimensional (2D) nickel oxide (NiO) hexagonal nanodiscs were synthesized via a hydrothermal route, followed by successive calcination. The decisive roles of the [OH-]/[Ni2+] molar ratios, as well as the calcination temperatures, were found in controlling the nanodiscs morphology of the NiO nanostructures. The increase in the concentration of OH- ions in the precursor solution influenced the crystal growth that directed to the formation of the hexagonal nanodisc morphology with increased edge thickness and beyond certain limits transformation from the nanodiscs to complete 3D morphology. The nanodiscs grew with increasing exposed surface size with a high BET area and varied thicknesses from 4 to 20 nm. The increase in calcination temperature improved crystallinity by eliminating crystal defects and voids, while crystals grew along the (200) plane. However, a reduction in the BET area and pore volume occurred at higher calcination temperature because of the collapse in micro-mesopores. The electrochemical performances of NiO electrodes show dependence on the thickness of the nanodiscs, the calcination temperature, and the type of current collector used. A distinct electrochemical feature was observed for NiO nanodiscs over planar conductive carbon fiber paper and 3D porous Ni foam substrates. The hydrothermal approach reported here to produce thickness-controlled NiO nanodiscs with high intrinsic surface area has great potential for developing next-generation battery-type faradic electrodes in conjunction with carbon allotropes and other metal oxide materials for high power and energy density throughput.
Název v anglickém jazyce
Thickness-controlled porous hexagonal NiO nanodiscs electrodes for use in supercapacitors: How nanodiscs thickness influences electrochemical performance
Popis výsledku anglicky
Two-dimensional (2D) nickel oxide (NiO) hexagonal nanodiscs were synthesized via a hydrothermal route, followed by successive calcination. The decisive roles of the [OH-]/[Ni2+] molar ratios, as well as the calcination temperatures, were found in controlling the nanodiscs morphology of the NiO nanostructures. The increase in the concentration of OH- ions in the precursor solution influenced the crystal growth that directed to the formation of the hexagonal nanodisc morphology with increased edge thickness and beyond certain limits transformation from the nanodiscs to complete 3D morphology. The nanodiscs grew with increasing exposed surface size with a high BET area and varied thicknesses from 4 to 20 nm. The increase in calcination temperature improved crystallinity by eliminating crystal defects and voids, while crystals grew along the (200) plane. However, a reduction in the BET area and pore volume occurred at higher calcination temperature because of the collapse in micro-mesopores. The electrochemical performances of NiO electrodes show dependence on the thickness of the nanodiscs, the calcination temperature, and the type of current collector used. A distinct electrochemical feature was observed for NiO nanodiscs over planar conductive carbon fiber paper and 3D porous Ni foam substrates. The hydrothermal approach reported here to produce thickness-controlled NiO nanodiscs with high intrinsic surface area has great potential for developing next-generation battery-type faradic electrodes in conjunction with carbon allotropes and other metal oxide materials for high power and energy density throughput.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0017856" target="_blank" >EF18_053/0017856: Posílení vědeckých kapacit OU II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF ENERGY STORAGE
ISSN
2352-152X
e-ISSN
2352-152X
Svazek periodika
—
Číslo periodika v rámci svazku
JUN 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000780268500003
EID výsledku v databázi Scopus
—