Privacy risk assessment and privacy-preserving data monitoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302GN7" target="_blank" >RIV/61988987:17310/22:A2302GN7 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417422003153" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417422003153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2022.116867" target="_blank" >10.1016/j.eswa.2022.116867</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Privacy risk assessment and privacy-preserving data monitoring
Popis výsledku v původním jazyce
Privacy regulations press organisations to handle personal data with reinforced caution. Moreover, organisations are dealing with increasing amounts of Personally Identifiable Information in their systems. Thus, there is a high demand not only for privacy-preserving data processing mechanisms but also privacy-enhancing services. As such, we propose the Personal Data Analyser, a tool that increases privacy assurances and minimises privacy risks through automated privacy-preserving data monitoring and privacy risk assessment mechanisms. Automated data monitoring is achieved with a hybrid mechanism that employs Regular Expressions, Natural Language Processing tools, and machine learning models such as Multilayer Perceptron and Random Forests. Our privacy risk assessment mechanism is based on custom-built crisp and fuzzy models, that consider information such as data processor reputation, data sensitiveness and other inputs in order to assess privacy risk associated with data transactions. Our work is integrated and validated under real use cases of the PoSeID-on platform and warns users whenever potential privacy risks are detected. Validation under PoSeID-on’s pilots and its users proved beneficial not only to assess our solution but also to raise users’ awareness of their data. The results of this work show that our solution is an effective Privacy Enhancing Technology that increases privacy assurances between organisations and their users.
Název v anglickém jazyce
Privacy risk assessment and privacy-preserving data monitoring
Popis výsledku anglicky
Privacy regulations press organisations to handle personal data with reinforced caution. Moreover, organisations are dealing with increasing amounts of Personally Identifiable Information in their systems. Thus, there is a high demand not only for privacy-preserving data processing mechanisms but also privacy-enhancing services. As such, we propose the Personal Data Analyser, a tool that increases privacy assurances and minimises privacy risks through automated privacy-preserving data monitoring and privacy risk assessment mechanisms. Automated data monitoring is achieved with a hybrid mechanism that employs Regular Expressions, Natural Language Processing tools, and machine learning models such as Multilayer Perceptron and Random Forests. Our privacy risk assessment mechanism is based on custom-built crisp and fuzzy models, that consider information such as data processor reputation, data sensitiveness and other inputs in order to assess privacy risk associated with data transactions. Our work is integrated and validated under real use cases of the PoSeID-on platform and warns users whenever potential privacy risks are detected. Validation under PoSeID-on’s pilots and its users proved beneficial not only to assess our solution but also to raise users’ awareness of their data. The results of this work show that our solution is an effective Privacy Enhancing Technology that increases privacy assurances between organisations and their users.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
—
Číslo periodika v rámci svazku
15 August 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000794359900007
EID výsledku v databázi Scopus
2-s2.0-85127530748