Graphene as a promising additive to hierarchically porous carbon monoliths for enhanced H2 and CO2 sorption
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402J5C" target="_blank" >RIV/61988987:17310/23:A2402J5C - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2212982022004905" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2212982022004905</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcou.2022.102371" target="_blank" >10.1016/j.jcou.2022.102371</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graphene as a promising additive to hierarchically porous carbon monoliths for enhanced H2 and CO2 sorption
Popis výsledku v původním jazyce
This study aimed to examine a synthesis of hierarchically porous carbon monoliths (HPCM) doped with graphene oxide (GO) for H2 and CO2 sorption applications. The synthesis procedure combining the sol-gel process with soft-templating was tuned by adding different quantities of GO (0.5; 2 and 10 wt% of the total amount of polycondensation mixture), as well as different carbonization temperatures (500 °C, 900 °C) of the composite materials during which the reduction of GO to graphene occurs. The degree of GO reduction to graphene and its incorporation into the HPCM matrix of prepared materials were characterized by Raman, FTIR, SEM, TEM, and elemental analysis. Although incorporation was successful, the higher pyrolysis temperature of 900 °C promotes the reduction of GO to graphene, which enhances the (ultra)microporosity (proven by gas physisorption experiments) of the samples, especially of the one with 10% GO addition. The effectivity of materials towards H2 and CO2 sorption was examined by sorption of H2 (77 K, up 1 bar) and CO2 (273 K, up 1 bar), respectively. Addition of any amount of GO together with the used lower pyrolysis temperature of 500 °C reduced the adsorption capacity of the samples for CO2 (from 2.4 to 1.8 mmol g−1) and H2 (from 5.8 to 3.6 mmol g−1) compared to the original HPCM. On the bright side, a 10% addition of GO in combination with a pyrolysis temperature of 900 °C results in industrially perspective material with an H2 and CO2 adsorption capacity of 9.6 mmol g−1 and 4.6 mmol g−1, respectively.
Název v anglickém jazyce
Graphene as a promising additive to hierarchically porous carbon monoliths for enhanced H2 and CO2 sorption
Popis výsledku anglicky
This study aimed to examine a synthesis of hierarchically porous carbon monoliths (HPCM) doped with graphene oxide (GO) for H2 and CO2 sorption applications. The synthesis procedure combining the sol-gel process with soft-templating was tuned by adding different quantities of GO (0.5; 2 and 10 wt% of the total amount of polycondensation mixture), as well as different carbonization temperatures (500 °C, 900 °C) of the composite materials during which the reduction of GO to graphene occurs. The degree of GO reduction to graphene and its incorporation into the HPCM matrix of prepared materials were characterized by Raman, FTIR, SEM, TEM, and elemental analysis. Although incorporation was successful, the higher pyrolysis temperature of 900 °C promotes the reduction of GO to graphene, which enhances the (ultra)microporosity (proven by gas physisorption experiments) of the samples, especially of the one with 10% GO addition. The effectivity of materials towards H2 and CO2 sorption was examined by sorption of H2 (77 K, up 1 bar) and CO2 (273 K, up 1 bar), respectively. Addition of any amount of GO together with the used lower pyrolysis temperature of 500 °C reduced the adsorption capacity of the samples for CO2 (from 2.4 to 1.8 mmol g−1) and H2 (from 5.8 to 3.6 mmol g−1) compared to the original HPCM. On the bright side, a 10% addition of GO in combination with a pyrolysis temperature of 900 °C results in industrially perspective material with an H2 and CO2 adsorption capacity of 9.6 mmol g−1 and 4.6 mmol g−1, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of CO2 utilization
ISSN
2212-9820
e-ISSN
2212-9839
Svazek periodika
—
Číslo periodika v rámci svazku
february 2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000910033600001
EID výsledku v databázi Scopus
2-s2.0-85144822576