Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graphene as a promising additive to hierarchically porous carbon monoliths for enhanced H2 and CO2 sorption

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402J5C" target="_blank" >RIV/61988987:17310/23:A2402J5C - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2212982022004905" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2212982022004905</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcou.2022.102371" target="_blank" >10.1016/j.jcou.2022.102371</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graphene as a promising additive to hierarchically porous carbon monoliths for enhanced H2 and CO2 sorption

  • Popis výsledku v původním jazyce

    This study aimed to examine a synthesis of hierarchically porous carbon monoliths (HPCM) doped with graphene oxide (GO) for H2 and CO2 sorption applications. The synthesis procedure combining the sol-gel process with soft-templating was tuned by adding different quantities of GO (0.5; 2 and 10 wt% of the total amount of polycondensation mixture), as well as different carbonization temperatures (500 °C, 900 °C) of the composite materials during which the reduction of GO to graphene occurs. The degree of GO reduction to graphene and its incorporation into the HPCM matrix of prepared materials were characterized by Raman, FTIR, SEM, TEM, and elemental analysis. Although incorporation was successful, the higher pyrolysis temperature of 900 °C promotes the reduction of GO to graphene, which enhances the (ultra)microporosity (proven by gas physisorption experiments) of the samples, especially of the one with 10% GO addition. The effectivity of materials towards H2 and CO2 sorption was examined by sorption of H2 (77 K, up 1 bar) and CO2 (273 K, up 1 bar), respectively. Addition of any amount of GO together with the used lower pyrolysis temperature of 500 °C reduced the adsorption capacity of the samples for CO2 (from 2.4 to 1.8 mmol g−1) and H2 (from 5.8 to 3.6 mmol g−1) compared to the original HPCM. On the bright side, a 10% addition of GO in combination with a pyrolysis temperature of 900 °C results in industrially perspective material with an H2 and CO2 adsorption capacity of 9.6 mmol g−1 and 4.6 mmol g−1, respectively.

  • Název v anglickém jazyce

    Graphene as a promising additive to hierarchically porous carbon monoliths for enhanced H2 and CO2 sorption

  • Popis výsledku anglicky

    This study aimed to examine a synthesis of hierarchically porous carbon monoliths (HPCM) doped with graphene oxide (GO) for H2 and CO2 sorption applications. The synthesis procedure combining the sol-gel process with soft-templating was tuned by adding different quantities of GO (0.5; 2 and 10 wt% of the total amount of polycondensation mixture), as well as different carbonization temperatures (500 °C, 900 °C) of the composite materials during which the reduction of GO to graphene occurs. The degree of GO reduction to graphene and its incorporation into the HPCM matrix of prepared materials were characterized by Raman, FTIR, SEM, TEM, and elemental analysis. Although incorporation was successful, the higher pyrolysis temperature of 900 °C promotes the reduction of GO to graphene, which enhances the (ultra)microporosity (proven by gas physisorption experiments) of the samples, especially of the one with 10% GO addition. The effectivity of materials towards H2 and CO2 sorption was examined by sorption of H2 (77 K, up 1 bar) and CO2 (273 K, up 1 bar), respectively. Addition of any amount of GO together with the used lower pyrolysis temperature of 500 °C reduced the adsorption capacity of the samples for CO2 (from 2.4 to 1.8 mmol g−1) and H2 (from 5.8 to 3.6 mmol g−1) compared to the original HPCM. On the bright side, a 10% addition of GO in combination with a pyrolysis temperature of 900 °C results in industrially perspective material with an H2 and CO2 adsorption capacity of 9.6 mmol g−1 and 4.6 mmol g−1, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of CO2 utilization

  • ISSN

    2212-9820

  • e-ISSN

    2212-9839

  • Svazek periodika

  • Číslo periodika v rámci svazku

    february 2023

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000910033600001

  • EID výsledku v databázi Scopus

    2-s2.0-85144822576