Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Iron/vanadium co-doped tungsten oxide nanostructures anchored on graphitic carbon nitride sheets (FeV-WO3@g-C3N4) as a cost-effective novel electrode material for advanced supercapacitor applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402LS0" target="_blank" >RIV/61988987:17310/23:A2402LS0 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlelanding/2023/RA/D3RA04108E" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2023/RA/D3RA04108E</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Iron/vanadium co-doped tungsten oxide nanostructures anchored on graphitic carbon nitride sheets (FeV-WO3@g-C3N4) as a cost-effective novel electrode material for advanced supercapacitor applications

  • Popis výsledku v původním jazyce

    In this work, we studied the effect of iron (Fe) and vanadium (V) co-doping (Fe/V), and graphitic carbon nitride (g-C3N4) on the performance of tungsten oxide (WO3) based electrodes for supercapacitor applications. The lone pair of electrons on nitrogen can improve the surface polarity of the g-C3N4electrode material, which may results in multiple binding sites on the surface of electrode for interaction with electrolyte ions. As electrolyte ions interact with g-C3N4, they quickly become entangled with FeV-WO3nanostructures, and the contact between the electrolyte and the working electrode is strengthened. Herein, FeV-WO3@g-C3N4is fabricated by a wet chemical approach along with pure WO3and FeV-WO3. All of the prepared samples i.e., WO3, FeV-WO3, and FeV-WO3@g-C3N4 were characterized by XRD, FTIR, EDS, FESEM, XPS, Raman, and BET techniques. Electrochemical performance is evaluated by cyclic voltammetry (CV), galvanic charge/discharge (GCD), and electrochemica limpedance spectroscopy (EIS). It is concluded from electrochemical studies that FeV-WO3@g-C3N4exhibits the highest electrochemical performance with specific capacitance of 1033.68 F g-1at scan rate 5 mV s-1in the potential window range from-0.8 to 0.25 V, that is greater than that for WO3(422.76 F g-1) and FeV-WO3(669.76 F g(-1)). FeV-WO3@g-C3N4has the highest discharge time (867 s) that shows it has greater storage capacity, and its coulombic efficiency is 96.7%, which is greater than that for WO3(80.1%) and FeV-WO3(92.1%), respectively. Furthermore, excellent stability up to 2000cycles is observed in FeV-WO3@g-C3N4. It is revealed from EIS measurements that equivalent series resistance and charge transfer values calculated for FeV-WO3@g-C3N4are 1.82Uand 0.65U, respectively.

  • Název v anglickém jazyce

    Iron/vanadium co-doped tungsten oxide nanostructures anchored on graphitic carbon nitride sheets (FeV-WO3@g-C3N4) as a cost-effective novel electrode material for advanced supercapacitor applications

  • Popis výsledku anglicky

    In this work, we studied the effect of iron (Fe) and vanadium (V) co-doping (Fe/V), and graphitic carbon nitride (g-C3N4) on the performance of tungsten oxide (WO3) based electrodes for supercapacitor applications. The lone pair of electrons on nitrogen can improve the surface polarity of the g-C3N4electrode material, which may results in multiple binding sites on the surface of electrode for interaction with electrolyte ions. As electrolyte ions interact with g-C3N4, they quickly become entangled with FeV-WO3nanostructures, and the contact between the electrolyte and the working electrode is strengthened. Herein, FeV-WO3@g-C3N4is fabricated by a wet chemical approach along with pure WO3and FeV-WO3. All of the prepared samples i.e., WO3, FeV-WO3, and FeV-WO3@g-C3N4 were characterized by XRD, FTIR, EDS, FESEM, XPS, Raman, and BET techniques. Electrochemical performance is evaluated by cyclic voltammetry (CV), galvanic charge/discharge (GCD), and electrochemica limpedance spectroscopy (EIS). It is concluded from electrochemical studies that FeV-WO3@g-C3N4exhibits the highest electrochemical performance with specific capacitance of 1033.68 F g-1at scan rate 5 mV s-1in the potential window range from-0.8 to 0.25 V, that is greater than that for WO3(422.76 F g-1) and FeV-WO3(669.76 F g(-1)). FeV-WO3@g-C3N4has the highest discharge time (867 s) that shows it has greater storage capacity, and its coulombic efficiency is 96.7%, which is greater than that for WO3(80.1%) and FeV-WO3(92.1%), respectively. Furthermore, excellent stability up to 2000cycles is observed in FeV-WO3@g-C3N4. It is revealed from EIS measurements that equivalent series resistance and charge transfer values calculated for FeV-WO3@g-C3N4are 1.82Uand 0.65U, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    RSC Advances

  • ISSN

    2046-2069

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    5.10.2023

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    26822-26838

  • Kód UT WoS článku

    001070886400001

  • EID výsledku v databázi Scopus