Dynamic and Nondynamic Electron Correlation Energy Decomposition Based on the Node of the Hartree–Fock Slater Determinant
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402NLL" target="_blank" >RIV/61988987:17310/23:A2402NLL - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/abs/10.1021/acs.jctc.3c00828" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/acs.jctc.3c00828</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.3c00828" target="_blank" >10.1021/acs.jctc.3c00828</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic and Nondynamic Electron Correlation Energy Decomposition Based on the Node of the Hartree–Fock Slater Determinant
Popis výsledku v původním jazyce
Distinguishing between dynamic and nondynamic electron correlation energy is a fundamental concept in quantum chemistry. It can be challenging to make a clear distinction between the two types of correlation energy or to determine their actual contributions in specific cases using wave function theory. This is because both single-reference and multireference methods cover both types of correlation energy to some extent. Fixed-node diffusion quantum Monte Carlo (FNDMC) accurately covers dynamic correlations, but it is limited in overall accuracy by the node of the trial wave function. We introduce a methodology for partitioning an exact electron correlation energy into its dynamic and nondynamic components. This is accomplished by restricting a ground-state solution from sharing its node with a spin-restricted Hartree–Fock Slater determinant. The FNDMC method is used as a tool to conveniently project out a lowest-energy state obeying such a boundary condition. The proposed approach provides an unambiguous and useful procedure for separating electron correlation energy, as demonstrated on multiple systems, including the He atom, bond breaking of H2, the parametric H2–H2 system, the Be–Ne atomic series with low- and high-spin states for C, N, and O atoms, and small molecules such as BH, HF, and CO at both equilibrium and elongated configurations, respectively.
Název v anglickém jazyce
Dynamic and Nondynamic Electron Correlation Energy Decomposition Based on the Node of the Hartree–Fock Slater Determinant
Popis výsledku anglicky
Distinguishing between dynamic and nondynamic electron correlation energy is a fundamental concept in quantum chemistry. It can be challenging to make a clear distinction between the two types of correlation energy or to determine their actual contributions in specific cases using wave function theory. This is because both single-reference and multireference methods cover both types of correlation energy to some extent. Fixed-node diffusion quantum Monte Carlo (FNDMC) accurately covers dynamic correlations, but it is limited in overall accuracy by the node of the trial wave function. We introduce a methodology for partitioning an exact electron correlation energy into its dynamic and nondynamic components. This is accomplished by restricting a ground-state solution from sharing its node with a spin-restricted Hartree–Fock Slater determinant. The FNDMC method is used as a tool to conveniently project out a lowest-energy state obeying such a boundary condition. The proposed approach provides an unambiguous and useful procedure for separating electron correlation energy, as demonstrated on multiple systems, including the He atom, bond breaking of H2, the parametric H2–H2 system, the Be–Ne atomic series with low- and high-spin states for C, N, and O atoms, and small molecules such as BH, HF, and CO at both equilibrium and elongated configurations, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9626
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
8147-8155
Kód UT WoS článku
001110556200001
EID výsledku v databázi Scopus
2-s2.0-85178021573