Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Synergy of zero-dimensional carbon dots decoration on the one-dimensional architecture of Ag-doped V2O5 for supercapacitor and overall water-splitting applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA2502NLF" target="_blank" >RIV/61988987:17310/24:A2502NLF - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0016236123033197?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016236123033197?via%3Dihub</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Synergy of zero-dimensional carbon dots decoration on the one-dimensional architecture of Ag-doped V2O5 for supercapacitor and overall water-splitting applications

  • Popis výsledku v původním jazyce

    The production of renewable energy sources and energy storage devices is crucial in addressing current global energy challenges. Hydrogen energy is a clean form of energy that can be produced without any harmful byproducts. For this purpose, nanorods of vanadium oxide (V2O5) and silver-doped vanadium oxide (Ag/V2O5) were synthesized by hydrothermal route. The carbon dots decorated silver doped vanadium oxide (Ag/V2O5@C) was fabricated using an ultrasonication approach. Various physio-chemical techniques were used to characterize the fabricated samples. The synthesized materials were employed as electrodes and electrocatalysts for supercapacitor and water-splitting applications. Cyclic voltammetry and cyclic charge-discharge experiments were performed, and results showed that Ag/V2O5@C exhibited 936 Fg(-1) specific capacitance at 5 mVs(-1) and 977 s discharge time. The charge transfer resistance was calculated via electrochemical impedance spectroscopy and Ag/V2O5@C showed a lower charge transfer resistance than other prepared materials. At 10 mAcm(-2), Ag/V2O5@C exhibited lower overpotential of 126 mV and 388 mV for hydrogen evolution (HER) and oxygen evolution reactions (OER) respectively. The lower tafel slope of 81 mV dec(-1) and 71 mV dec(-1) was attributed to the Ag/V2O5@C for HER and OER respectively. Ag/V2O5@C showed higher reaction kinetics due to the fast rate of charge transfer, low resistance, high conductivity, and greater active sites provided by the carbon dots for electrocatalytic reaction. So, Ag/V2O5@C can be employed as an effective electrocatalyst and electrode material for electrochemical applications.

  • Název v anglickém jazyce

    Synergy of zero-dimensional carbon dots decoration on the one-dimensional architecture of Ag-doped V2O5 for supercapacitor and overall water-splitting applications

  • Popis výsledku anglicky

    The production of renewable energy sources and energy storage devices is crucial in addressing current global energy challenges. Hydrogen energy is a clean form of energy that can be produced without any harmful byproducts. For this purpose, nanorods of vanadium oxide (V2O5) and silver-doped vanadium oxide (Ag/V2O5) were synthesized by hydrothermal route. The carbon dots decorated silver doped vanadium oxide (Ag/V2O5@C) was fabricated using an ultrasonication approach. Various physio-chemical techniques were used to characterize the fabricated samples. The synthesized materials were employed as electrodes and electrocatalysts for supercapacitor and water-splitting applications. Cyclic voltammetry and cyclic charge-discharge experiments were performed, and results showed that Ag/V2O5@C exhibited 936 Fg(-1) specific capacitance at 5 mVs(-1) and 977 s discharge time. The charge transfer resistance was calculated via electrochemical impedance spectroscopy and Ag/V2O5@C showed a lower charge transfer resistance than other prepared materials. At 10 mAcm(-2), Ag/V2O5@C exhibited lower overpotential of 126 mV and 388 mV for hydrogen evolution (HER) and oxygen evolution reactions (OER) respectively. The lower tafel slope of 81 mV dec(-1) and 71 mV dec(-1) was attributed to the Ag/V2O5@C for HER and OER respectively. Ag/V2O5@C showed higher reaction kinetics due to the fast rate of charge transfer, low resistance, high conductivity, and greater active sites provided by the carbon dots for electrocatalytic reaction. So, Ag/V2O5@C can be employed as an effective electrocatalyst and electrode material for electrochemical applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FUEL

  • ISSN

    0016-2361

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    10.2.2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    001153516900001

  • EID výsledku v databázi Scopus