Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Three-dimensional bimodal pore-rich G/MXene sponge amalgamated with vanadium diselenide nanosheets as a high-performance electrode for electrochemical water-oxidation/reduction reactions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA250383O" target="_blank" >RIV/61988987:17310/24:A250383O - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt00602j" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt00602j</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d4dt00602j" target="_blank" >10.1039/d4dt00602j</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Three-dimensional bimodal pore-rich G/MXene sponge amalgamated with vanadium diselenide nanosheets as a high-performance electrode for electrochemical water-oxidation/reduction reactions

  • Popis výsledku v původním jazyce

    Exploring new strategies to design non-precious and efficient electrocatalysts can provide a solution for sluggish electrocatalytic kinetics and sustainable hydrogen energy. Transition metal selenides are potential contenders for bifunctional electrocatalysis owing to their unique layered structure, low band gap, and high intrinsic activities. However, insufficient access to active sites, lethargic water dissociation, and structural degradation of active materials during electrochemical reactions limit their activities, especially in alkaline media. In this article, we report a useful strategy to assemble vanadium diselenide (VSe2) into a 3D MXene/rGO-based sponge-like architecture (VSe2@G/MXe) using hydrothermal and freeze-drying approaches. The 3D hierarchical meso/macro-pore rich sponge-like morphology not only prevents aggregation of VSe2 nanosheets but also offers a kinetics-favorable framework and high robustness to the electrocatalyst. Synergistic coupling of VSe2 and a MXene/rGO matrix yields a heterostructure with a large specific surface area, high conductivity, and multi-dimensional anisotropic pore channels for uninterrupted mass transport and gas diffusion. Consequently, VSe2@G/MXe presented superior electrochemical activity for both the HER and OER compared to its counterparts (VSe2 and VSe2@G), in alkaline media. The overpotentials required to reach a cathodic and anodic current density of 10 mA cm-2 were 153 mV (Tafel slope = 84 mV dec-1) and 241 mV (Tafel slope = 87 mV dec-1), respectively. The Rct values at the open circuit voltage were as low as 9.1 Omega and 1.41 Omega for the HER and OER activity, respectively. Importantly, VSe2@G/MXe withstands a steady current output for a long 24 h operating time. Hence, this work presents a rational design for 3D microstructures with optimum characteristics for efficient bifunctional alkaline water-splitting. A three-dimensional hierarchical G/MXe sponge integrated with VSe2 sheets as advanced electrode material for water-splitting.

  • Název v anglickém jazyce

    Three-dimensional bimodal pore-rich G/MXene sponge amalgamated with vanadium diselenide nanosheets as a high-performance electrode for electrochemical water-oxidation/reduction reactions

  • Popis výsledku anglicky

    Exploring new strategies to design non-precious and efficient electrocatalysts can provide a solution for sluggish electrocatalytic kinetics and sustainable hydrogen energy. Transition metal selenides are potential contenders for bifunctional electrocatalysis owing to their unique layered structure, low band gap, and high intrinsic activities. However, insufficient access to active sites, lethargic water dissociation, and structural degradation of active materials during electrochemical reactions limit their activities, especially in alkaline media. In this article, we report a useful strategy to assemble vanadium diselenide (VSe2) into a 3D MXene/rGO-based sponge-like architecture (VSe2@G/MXe) using hydrothermal and freeze-drying approaches. The 3D hierarchical meso/macro-pore rich sponge-like morphology not only prevents aggregation of VSe2 nanosheets but also offers a kinetics-favorable framework and high robustness to the electrocatalyst. Synergistic coupling of VSe2 and a MXene/rGO matrix yields a heterostructure with a large specific surface area, high conductivity, and multi-dimensional anisotropic pore channels for uninterrupted mass transport and gas diffusion. Consequently, VSe2@G/MXe presented superior electrochemical activity for both the HER and OER compared to its counterparts (VSe2 and VSe2@G), in alkaline media. The overpotentials required to reach a cathodic and anodic current density of 10 mA cm-2 were 153 mV (Tafel slope = 84 mV dec-1) and 241 mV (Tafel slope = 87 mV dec-1), respectively. The Rct values at the open circuit voltage were as low as 9.1 Omega and 1.41 Omega for the HER and OER activity, respectively. Importantly, VSe2@G/MXe withstands a steady current output for a long 24 h operating time. Hence, this work presents a rational design for 3D microstructures with optimum characteristics for efficient bifunctional alkaline water-splitting. A three-dimensional hierarchical G/MXe sponge integrated with VSe2 sheets as advanced electrode material for water-splitting.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    DALTON T

  • ISSN

    1477-9226

  • e-ISSN

    1477-9234

  • Svazek periodika

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    8177-8190

  • Kód UT WoS článku

    001209330200001

  • EID výsledku v databázi Scopus

    2-s2.0-85191811781