Non‐Invasive Biophysical Techniques to Monitor the Structural Plasticity of the Photosynthetic Machinery of Live Diatom Cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA25038RZ" target="_blank" >RIV/61988987:17310/24:A25038RZ - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/9781119842156.ch8" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/9781119842156.ch8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/9781119842156.ch8" target="_blank" >10.1002/9781119842156.ch8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non‐Invasive Biophysical Techniques to Monitor the Structural Plasticity of the Photosynthetic Machinery of Live Diatom Cells
Popis výsledku v původním jazyce
The photosynthetic performance of diatoms depends largely on the organization and structural flexibility of their thylakoid membranes, the densely packed, highly organized membrane vesicles in which light reactions of photosynthesis occur. Different regulatory mechanisms that fine tune the photosynthetic functions affect the organization of the photosynthetic machinery at different levels of structural complexity, from the level of individual protein complexes to the macroarray of membrane proteins and the remodeling of the entire thylakoid membrane system. To monitor these reorganizations, non-invasive techniques are of special value. In this chapter, we focus our attention on three of these techniques, which have been demonstrated to provide unique and useful information on the structure and structural and functional plasticity of live diatom cells: (i) circular dichroism (CD) spectroscopy, which has provided unique information on the chiral (macro-)organization of protein complexes and on their rapid, reversible reorganizations, fine-tuning the light-harvesting processes, as well as on variations in the short-range excitonic interactions in the antenna complexes; (ii) small-angle neutron scattering (SANS), which has been used to determine the periodic organization of the thylakoid membranes and to monitor reversible ultrastructural changes on the time-scale of minutes, induced by variations in the environmental conditions such as changes in temperature or light intensity; and (iii) electrochromic shift absorbance transients (ΔA ECS ), a spectroscopic tool which has been shown to be capable of identifying distinct functional groups of the light-harvesting carotenoid fucoxanthin in different diatoms and in cells exposed to different light intensities. Future use of these techniques will most certainly contribute to the deeper understanding of key regulatory mechanisms of photosynthesis in diatoms.
Název v anglickém jazyce
Non‐Invasive Biophysical Techniques to Monitor the Structural Plasticity of the Photosynthetic Machinery of Live Diatom Cells
Popis výsledku anglicky
The photosynthetic performance of diatoms depends largely on the organization and structural flexibility of their thylakoid membranes, the densely packed, highly organized membrane vesicles in which light reactions of photosynthesis occur. Different regulatory mechanisms that fine tune the photosynthetic functions affect the organization of the photosynthetic machinery at different levels of structural complexity, from the level of individual protein complexes to the macroarray of membrane proteins and the remodeling of the entire thylakoid membrane system. To monitor these reorganizations, non-invasive techniques are of special value. In this chapter, we focus our attention on three of these techniques, which have been demonstrated to provide unique and useful information on the structure and structural and functional plasticity of live diatom cells: (i) circular dichroism (CD) spectroscopy, which has provided unique information on the chiral (macro-)organization of protein complexes and on their rapid, reversible reorganizations, fine-tuning the light-harvesting processes, as well as on variations in the short-range excitonic interactions in the antenna complexes; (ii) small-angle neutron scattering (SANS), which has been used to determine the periodic organization of the thylakoid membranes and to monitor reversible ultrastructural changes on the time-scale of minutes, induced by variations in the environmental conditions such as changes in temperature or light intensity; and (iii) electrochromic shift absorbance transients (ΔA ECS ), a spectroscopic tool which has been shown to be capable of identifying distinct functional groups of the light-harvesting carotenoid fucoxanthin in different diatoms and in cells exposed to different light intensities. Future use of these techniques will most certainly contribute to the deeper understanding of key regulatory mechanisms of photosynthesis in diatoms.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Diatom Photosynthesis: From Primary Production to High‐Value Molecules
ISBN
9781119842088
Počet stran výsledku
22
Strana od-do
245-266
Počet stran knihy
656
Název nakladatele
Wiley
Místo vydání
Hoboken
Kód UT WoS kapitoly
—