Testing hypotheses used in analysis of control quality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17450%2F19%3AA20020XY" target="_blank" >RIV/61988987:17450/19:A20020XY - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scs-europe.net/dlib/2019/2019-0132.htm" target="_blank" >http://www.scs-europe.net/dlib/2019/2019-0132.htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7148/2019-0132" target="_blank" >10.7148/2019-0132</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing hypotheses used in analysis of control quality
Popis výsledku v původním jazyce
Simulation is an important tool for testing and verification of newly designed or modified control algorithms. One of the aims of the simulation verification is a comparison of control quality achieved with new or modified methods with control quality achieved with known methods. For an analysis of control quality, criterions based namely on sum of powers of control errors and sum of powers of control increments are commonly used. These criterions can result only in descriptive attributes of control quality. It means that on the basis of particular values of the criterions it is not possible to identify if the control quality achieved with one algorithm is statistically significantly different from control quality achieved with another algorithm. The aim of this paper is examining of control quality with use of testing hypotheses on existence of statistically significant differences between partial values of the control quality criterions in individual sampling periods. The analysis was performed on a strictly defined significance level 0.001, which is a standardly used value in technical applications. A realization is presented on a simulation of a multivariable predictive control with a modified optimization technique.
Název v anglickém jazyce
Testing hypotheses used in analysis of control quality
Popis výsledku anglicky
Simulation is an important tool for testing and verification of newly designed or modified control algorithms. One of the aims of the simulation verification is a comparison of control quality achieved with new or modified methods with control quality achieved with known methods. For an analysis of control quality, criterions based namely on sum of powers of control errors and sum of powers of control increments are commonly used. These criterions can result only in descriptive attributes of control quality. It means that on the basis of particular values of the criterions it is not possible to identify if the control quality achieved with one algorithm is statistically significantly different from control quality achieved with another algorithm. The aim of this paper is examining of control quality with use of testing hypotheses on existence of statistically significant differences between partial values of the control quality criterions in individual sampling periods. The analysis was performed on a strictly defined significance level 0.001, which is a standardly used value in technical applications. A realization is presented on a simulation of a multivariable predictive control with a modified optimization technique.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - European Council for Modelling and Simulation, ECMS (vol. 33, issue 1)
ISBN
—
ISSN
2522-2414
e-ISSN
2522-2422
Počet stran výsledku
6
Strana od-do
132-137
Název nakladatele
European Council for Modelling and Simulation
Místo vydání
—
Místo konání akce
Caserta, Area of Napoli, Italy
Datum konání akce
11. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000477784500019