Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pretáčacie a otáčacie binárne agregačné funkcie

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F09%3AA0900TWQ" target="_blank" >RIV/61988987:17610/09:A0900TWQ - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flipping and cyclic shifting of binary aggregation functions

  • Popis výsledku v původním jazyce

    We introduce two types of transformations of random variables, called flipping and cyclic shifting. As these transformations preserve monotonicity at the level of univariate cumulative distribution functions, they can be used to develop corresponding coordinate-wise transformations of binary aggregation functions. We lay bare the admissibility of these transformations, i.e. the necessary and sufficient conditions under which they result in a binary aggregation function. We investigate which additional properties, such as the 1-Lipschitz property and 2-increasingness, entail these admissibility conditions. Moreover, we point out which of these properties are preserved under flipping and/or cyclic shifting. Interestingly, quasi-copulas remain quasi-copulas under flipping, while copulas remain copulas under flipping as well as under cyclic shifting.

  • Název v anglickém jazyce

    Flipping and cyclic shifting of binary aggregation functions

  • Popis výsledku anglicky

    We introduce two types of transformations of random variables, called flipping and cyclic shifting. As these transformations preserve monotonicity at the level of univariate cumulative distribution functions, they can be used to develop corresponding coordinate-wise transformations of binary aggregation functions. We lay bare the admissibility of these transformations, i.e. the necessary and sufficient conditions under which they result in a binary aggregation function. We investigate which additional properties, such as the 1-Lipschitz property and 2-increasingness, entail these admissibility conditions. Moreover, we point out which of these properties are preserved under flipping and/or cyclic shifting. Interestingly, quasi-copulas remain quasi-copulas under flipping, while copulas remain copulas under flipping as well as under cyclic shifting.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuzzy Sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

  • Svazek periodika

    160

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000263661700005

  • EID výsledku v databázi Scopus