Forecasting seasonal time series with computational intelligence: on recent methods and the potential of their combinations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F13%3AA13012G0" target="_blank" >RIV/61988987:17610/13:A13012G0 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting seasonal time series with computational intelligence: on recent methods and the potential of their combinations
Popis výsledku v původním jazyce
Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neural networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on seasonal time series from distinct domains on three forecasting horizons. The most important contribution is is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.
Název v anglickém jazyce
Forecasting seasonal time series with computational intelligence: on recent methods and the potential of their combinations
Popis výsledku anglicky
Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neural networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on seasonal time series from distinct domains on three forecasting horizons. The most important contribution is is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EXPERT SYST APPL
ISSN
0957-4174
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1981-1992
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—