Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fuzzy Rule-Based Ensemble Forecasting: Introductory Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F13%3AA13014MF" target="_blank" >RIV/61988987:17610/13:A13014MF - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fuzzy Rule-Based Ensemble Forecasting: Introductory Study

  • Popis výsledku v původním jazyce

    There is no individual forecasting method that is generally for any given time series better than any other method. Thus, no matter the efficiency of a chosen method, there always exists a danger that for a given time series the chosen method is inappropriate. To overcome such a problem and avoid the above mentioned danger, distinct ensemble techniques that combine more individual forecasting methods are designed. These techniques basically construct a forecast as a linear combination of forecasts by individual methods. In this contribution, we construct a novel ensemble technique that determines the weights based on time series features. The protocol that carries a knowledge how to combine the individual forecasts is a fuzzy rule base (linguistic description). An exhaustive experimental justification is provided. The suggested ensemble approach based on fuzzy rules demonstrates both, lower forecasting error and higher robustness.

  • Název v anglickém jazyce

    Fuzzy Rule-Based Ensemble Forecasting: Introductory Study

  • Popis výsledku anglicky

    There is no individual forecasting method that is generally for any given time series better than any other method. Thus, no matter the efficiency of a chosen method, there always exists a danger that for a given time series the chosen method is inappropriate. To overcome such a problem and avoid the above mentioned danger, distinct ensemble techniques that combine more individual forecasting methods are designed. These techniques basically construct a forecast as a linear combination of forecasts by individual methods. In this contribution, we construct a novel ensemble technique that determines the weights based on time series features. The protocol that carries a knowledge how to combine the individual forecasts is a fuzzy rule base (linguistic description). An exhaustive experimental justification is provided. The suggested ensemble approach based on fuzzy rules demonstrates both, lower forecasting error and higher robustness.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Synergies of Soft Computing and Statistics for Intelligent Data Analysis (Advances in Intelligent Systems and Computing))

  • ISBN

    978-3-642-33041-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    379-387

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Konstanz

  • Datum konání akce

    1. 1. 2012

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000312969600041