Closure theories of powerset theories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1601F4H" target="_blank" >RIV/61988987:17610/15:A1601F4H - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Closure theories of powerset theories
Popis výsledku v původním jazyce
A notion of a closure theory of a powerset theory in a ground category is introduced as a generalization of a topology theory of a powerset the- ory. Using examples of powerset theories in the category Set of sets and in the category of sets with similarity relations, it is proved that these theories can be used as ground theories for closure theories of powerset theories in these two categories. Moreover, it is proved that all these clo- sure theories of powerset theories are topological constructs. Anotion of a closure operator which preserves a canonical form of fuzzy objects in these categories is introduced, and it is proved that a closure theory of a powerset theory in the ground category Set is a core ective subcategory of the closure theory of(Zadeh's) powerset theory, which preserves canonical forms of fuzzy sets.
Název v anglickém jazyce
Closure theories of powerset theories
Popis výsledku anglicky
A notion of a closure theory of a powerset theory in a ground category is introduced as a generalization of a topology theory of a powerset the- ory. Using examples of powerset theories in the category Set of sets and in the category of sets with similarity relations, it is proved that these theories can be used as ground theories for closure theories of powerset theories in these two categories. Moreover, it is proved that all these clo- sure theories of powerset theories are topological constructs. Anotion of a closure operator which preserves a canonical form of fuzzy objects in these categories is introduced, and it is proved that a closure theory of a powerset theory in the ground category Set is a core ective subcategory of the closure theory of(Zadeh's) powerset theory, which preserves canonical forms of fuzzy sets.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Tatra Mountains Mathematical Publications
ISSN
1210-3195
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
25
Strana od-do
101-126
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—