Fuzzy Inference Systems Preserving Moser-Navara Axioms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901LI1" target="_blank" >RIV/61988987:17610/18:A1901LI1 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.fss.2017.11.005" target="_blank" >http://dx.doi.org/10.1016/j.fss.2017.11.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.11.005" target="_blank" >10.1016/j.fss.2017.11.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy Inference Systems Preserving Moser-Navara Axioms
Popis výsledku v původním jazyce
This paper is a short note contribution to the topic of fuzzy relational inference systems and the preservation of their desirable properties. It addresses the two main fuzzy relational inferences - compositional rule of inference (CRI) and the Bandler-Kohout subproduct (BK-subproduct) - and their combination with two fundamental fuzzy relational models of fuzzy rule bases, namely, the Mamdani-Assilian and the implicative models.The goal of this short note article is twofold. Firstly, we show that the robustness related to the combination of BK-subproduct and implicative fuzzy rule base model was not proven correctly in [24]. However, we will show that the result itself is still valid and a valid proof will be provided. Secondly, we shortly discuss the preservation of desirable properties of fuzzy inference systems and conclude that neither the above mentioned robustness nor any other computational advantages should automatically lead to a preference of the combinations of CRI with Mamdani-Assilian models or of the BK-subproduct with the implicative models.
Název v anglickém jazyce
Fuzzy Inference Systems Preserving Moser-Navara Axioms
Popis výsledku anglicky
This paper is a short note contribution to the topic of fuzzy relational inference systems and the preservation of their desirable properties. It addresses the two main fuzzy relational inferences - compositional rule of inference (CRI) and the Bandler-Kohout subproduct (BK-subproduct) - and their combination with two fundamental fuzzy relational models of fuzzy rule bases, namely, the Mamdani-Assilian and the implicative models.The goal of this short note article is twofold. Firstly, we show that the robustness related to the combination of BK-subproduct and implicative fuzzy rule base model was not proven correctly in [24]. However, we will show that the result itself is still valid and a valid proof will be provided. Secondly, we shortly discuss the preservation of desirable properties of fuzzy inference systems and conclude that neither the above mentioned robustness nor any other computational advantages should automatically lead to a preference of the combinations of CRI with Mamdani-Assilian models or of the BK-subproduct with the implicative models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Svazek periodika
338
Číslo periodika v rámci svazku
1 May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
97-116
Kód UT WoS článku
000427471500006
EID výsledku v databázi Scopus
2-s2.0-85033452345