Non-denoting terms in fuzzy logic: An initial exploration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA1901N29" target="_blank" >RIV/61988987:17610/18:A1901N29 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-66830-7_14" target="_blank" >http://dx.doi.org/10.1007/978-3-319-66830-7_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-66830-7_14" target="_blank" >10.1007/978-3-319-66830-7_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-denoting terms in fuzzy logic: An initial exploration
Popis výsledku v původním jazyce
We introduce two variants of first-order fuzzy logic that can deal with non-denoting terms, or terms that lack existing referents, e.g., Pegasus, the current king of France, the largest number, or 0/0. Logics designed for this purpose in the classical setting are known as free logics. In this paper we discuss the features of free logics and select the options best suited for fuzzification, deciding on the so-called dual-domain semantics for positive free logic with truth-value gaps and outer quantifiers. We fuzzify the latter semantics in two levels of generality, first with a crisp and subsequently with a fuzzy predicate of existence. To accommodate truth-valueless statements about nonexistent objects, we employ a recently proposed first-order partial fuzzy logic with a single undefined truth value. Combining the dual-domain semantics with partial fuzzy logic, we define several kinds of `inner-domain' quantifiers, relativized by the predicate of existence. Finally, we make a few observations on some of the resulting rules of free fuzzy quantification that illustrate the differences between the two proposed systems of free fuzzy logic and their well known non-free or non-fuzzy variants.
Název v anglickém jazyce
Non-denoting terms in fuzzy logic: An initial exploration
Popis výsledku anglicky
We introduce two variants of first-order fuzzy logic that can deal with non-denoting terms, or terms that lack existing referents, e.g., Pegasus, the current king of France, the largest number, or 0/0. Logics designed for this purpose in the classical setting are known as free logics. In this paper we discuss the features of free logics and select the options best suited for fuzzification, deciding on the so-called dual-domain semantics for positive free logic with truth-value gaps and outer quantifiers. We fuzzify the latter semantics in two levels of generality, first with a crisp and subsequently with a fuzzy predicate of existence. To accommodate truth-valueless statements about nonexistent objects, we employ a recently proposed first-order partial fuzzy logic with a single undefined truth value. Combining the dual-domain semantics with partial fuzzy logic, we define several kinds of `inner-domain' quantifiers, relativized by the predicate of existence. Finally, we make a few observations on some of the resulting rules of free fuzzy quantification that illustrate the differences between the two proposed systems of free fuzzy logic and their well known non-free or non-fuzzy variants.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-19170S" target="_blank" >GA16-19170S: Fuzzy parciální logika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Fuzzy Logic and Technology 2017: Proceedings of: EUSFLAT-2017 - The 10th Conference of the European Society for Fuzzy Logic and Technology
ISBN
978-3-319-66830-7
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
11
Strana od-do
148-158
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Warszawa
Datum konání akce
11. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000432315700014