Evaluation of F-Transform Based Measures of Image Sharpness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA2001XG1" target="_blank" >RIV/61988987:17610/18:A2001XG1 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8716167" target="_blank" >https://ieeexplore.ieee.org/document/8716167</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCIS-ISIS.2018.00057" target="_blank" >10.1109/SCIS-ISIS.2018.00057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of F-Transform Based Measures of Image Sharpness
Popis výsledku v původním jazyce
During our research, we have presented a novel approach for multi-focus image fusion based on new image sharpness measures built on F-Transform. We have already presented that F-Transform based sharpness measure subjectively give good results in edge detection and sharpness evaluation. In order to continue with our research, we need to prove that such F-Transform based measures are generally usable as sharpness measures in image processing. So we aimed at our measures trying to evaluate their stability and robustness against noise. In the contribution, we present theoretical background and properties requested to be satisfied by sound sharpness measures. Then, we presented one previously introduced and one novel F-Transform based sharpness measure, and according to the presented properties, we verified that the proposed measures are fulfilling stated properties. The verification is done over experimental and real-life images and is evaluated referring to the standard simple sharpness measures. The result is that both F-Transform based proposed measures supports presented properties and can be generally used as image sharpness measures.
Název v anglickém jazyce
Evaluation of F-Transform Based Measures of Image Sharpness
Popis výsledku anglicky
During our research, we have presented a novel approach for multi-focus image fusion based on new image sharpness measures built on F-Transform. We have already presented that F-Transform based sharpness measure subjectively give good results in edge detection and sharpness evaluation. In order to continue with our research, we need to prove that such F-Transform based measures are generally usable as sharpness measures in image processing. So we aimed at our measures trying to evaluate their stability and robustness against noise. In the contribution, we present theoretical background and properties requested to be satisfied by sound sharpness measures. Then, we presented one previously introduced and one novel F-Transform based sharpness measure, and according to the presented properties, we verified that the proposed measures are fulfilling stated properties. The verification is done over experimental and real-life images and is evaluated referring to the standard simple sharpness measures. The result is that both F-Transform based proposed measures supports presented properties and can be generally used as image sharpness measures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Joint International Conference on Soft Computing and Intelligent Systems SCIS and International Symposium on Advanced Intelligent Systems ISIS
ISBN
978-1-5386-2633-7
ISSN
2377-6870
e-ISSN
—
Počet stran výsledku
6
Strana od-do
281-286
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Toyama
Datum konání akce
5. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000470750300046