Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Training neural network over encrypted data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21025BN" target="_blank" >RIV/61988987:17610/20:A21025BN - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/9204073" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9204073</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/DSMP47368.2020.9204073" target="_blank" >10.1109/DSMP47368.2020.9204073</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Training neural network over encrypted data

  • Popis výsledku v původním jazyce

    We are answering the question whenever systems with convolutional neural network classifier trained over plain and encrypted data keep the ordering according to accuracy. Our motivation is need for designing convolutional neural network classifiers when data in their plain form are not accessible because of private company policy or sensitive data gathered by police. We propose to use a combination of fully connected autoencoder together with a convolutional neural network classifier. The autoencoder transforms the data info form that allows the convolutional classifier to be trained. We present three experiments that show the ordering of systems over plain and encrypted data. The results show that the systems indeed keep the ordering, and thus a NN designer can select appropriate architecture over encrypted data and later let data owner train or fine-tune the system/CNN classifier on the plain data.

  • Název v anglickém jazyce

    Training neural network over encrypted data

  • Popis výsledku anglicky

    We are answering the question whenever systems with convolutional neural network classifier trained over plain and encrypted data keep the ordering according to accuracy. Our motivation is need for designing convolutional neural network classifiers when data in their plain form are not accessible because of private company policy or sensitive data gathered by police. We propose to use a combination of fully connected autoencoder together with a convolutional neural network classifier. The autoencoder transforms the data info form that allows the convolutional classifier to be trained. We present three experiments that show the ordering of systems over plain and encrypted data. The results show that the systems indeed keep the ordering, and thus a NN designer can select appropriate architecture over encrypted data and later let data owner train or fine-tune the system/CNN classifier on the plain data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020

  • ISBN

    978-1-7281-3214-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    23-27

  • Název nakladatele

    IEEE

  • Místo vydání

  • Místo konání akce

    Lviv, Ukrajina

  • Datum konání akce

    1. 1. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku