Partial Fuzzy Quantifiers and their Computation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA23027I9" target="_blank" >RIV/61988987:17610/22:A23027I9 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eurekaselect.com/189940/article" target="_blank" >https://www.eurekaselect.com/189940/article</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2174/2666294901666210105141618" target="_blank" >10.2174/2666294901666210105141618</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Partial Fuzzy Quantifiers and their Computation
Popis výsledku v původním jazyce
Background: In computer science, one often meets the requirement to deal with partial functions. They naturally raise, for example, when a mistake such as the square root of a negative number or division by zero occurs, or when we want to express the semantics of the expression “Czech president in 18th century” because there was no such president before 1918. Method: In this paper, we will extend the theory of intermediate quantifiers (i.e., expressions such as “most, almost all, many, a few”, etc.) to deal with partially defined fuzzy sets. First, we extend algebraic operations that are used in fuzzy logic by additional value “undefined”. Then we will introduce intermediate quantifiers using the former. The theory of intermediate quantifiers has been usually developed as a special theory of higher-order fuzzy logic. Results: In this paper, we introduce the quantifiers semantically and show how they can be computed. The latter is also demonstrated in three illustrative examples. Conclusion: The paper contributes to the development of fuzzy quantifier theory by its extension by undefined values and suggests methods for computation of their truth values.
Název v anglickém jazyce
Partial Fuzzy Quantifiers and their Computation
Popis výsledku anglicky
Background: In computer science, one often meets the requirement to deal with partial functions. They naturally raise, for example, when a mistake such as the square root of a negative number or division by zero occurs, or when we want to express the semantics of the expression “Czech president in 18th century” because there was no such president before 1918. Method: In this paper, we will extend the theory of intermediate quantifiers (i.e., expressions such as “most, almost all, many, a few”, etc.) to deal with partially defined fuzzy sets. First, we extend algebraic operations that are used in fuzzy logic by additional value “undefined”. Then we will introduce intermediate quantifiers using the former. The theory of intermediate quantifiers has been usually developed as a special theory of higher-order fuzzy logic. Results: In this paper, we introduce the quantifiers semantically and show how they can be computed. The latter is also demonstrated in three illustrative examples. Conclusion: The paper contributes to the development of fuzzy quantifier theory by its extension by undefined values and suggests methods for computation of their truth values.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Fuzzy Logic and Modeling in Engineering
ISSN
2666-2949
e-ISSN
2666-2957
Svazek periodika
—
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
AE - Spojené arabské emiráty
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—