Quadrature Rules for the Fm-Transform Polynomial Components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302HZC" target="_blank" >RIV/61988987:17610/22:A2302HZC - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2075-1680/11/10/501" target="_blank" >https://www.mdpi.com/2075-1680/11/10/501</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/axioms11100501" target="_blank" >10.3390/axioms11100501</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quadrature Rules for the Fm-Transform Polynomial Components
Popis výsledku v původním jazyce
The purpose of this paper is to reduce the complexity of computing the components of the integral $F^m$-transform, $mgeq 0$, whose analytic expressions include definite integrals. We propose to use nontrivial quadrature rules with nonuniformly distributed integration points instead of the widely used Newton–Cotes formulas. As the weight function that determines orthogonality, we choose the generating function of the fuzzy partition associated with the $F^m$-transform. Taking into account this fact and the fact of exact integration of orthogonal polynomials, we obtain exact analytic expressions for the denominators of the components of the $F^m$-transformation and their approximate analytic expressions, which include only elementary arithmetic operations. This allows us to effectively estimate the components of the $F^m$-transformation for $0leq mleq 3$. As a side result, we obtain a new method of numerical integration, which can be recommended not only for continuous functions, but also for strongly oscillating functions. The advantage of the proposed calculation method is shown by examples.
Název v anglickém jazyce
Quadrature Rules for the Fm-Transform Polynomial Components
Popis výsledku anglicky
The purpose of this paper is to reduce the complexity of computing the components of the integral $F^m$-transform, $mgeq 0$, whose analytic expressions include definite integrals. We propose to use nontrivial quadrature rules with nonuniformly distributed integration points instead of the widely used Newton–Cotes formulas. As the weight function that determines orthogonality, we choose the generating function of the fuzzy partition associated with the $F^m$-transform. Taking into account this fact and the fact of exact integration of orthogonal polynomials, we obtain exact analytic expressions for the denominators of the components of the $F^m$-transformation and their approximate analytic expressions, which include only elementary arithmetic operations. This allows us to effectively estimate the components of the $F^m$-transformation for $0leq mleq 3$. As a side result, we obtain a new method of numerical integration, which can be recommended not only for continuous functions, but also for strongly oscillating functions. The advantage of the proposed calculation method is shown by examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Axioms
ISSN
2075-1680
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
29
Strana od-do
—
Kód UT WoS článku
000874235600001
EID výsledku v databázi Scopus
2-s2.0-85140405966