Trigonometric Fmn-transform of multi-variable functions and its application to the partial differential equations and image processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302HZG" target="_blank" >RIV/61988987:17610/22:A2302HZG - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00500-022-07481-2" target="_blank" >https://link.springer.com/article/10.1007/s00500-022-07481-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-022-07481-2" target="_blank" >10.1007/s00500-022-07481-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trigonometric Fmn-transform of multi-variable functions and its application to the partial differential equations and image processing
Popis výsledku v původním jazyce
In this study, we focus on the extention of the trigonometric $F$-transform for functions in one variable to: (i) a larger domain; (ii) a higher degree of the $F^m$-transform, and (iii) many-variable functions to improve its approximation properties over the entire domain and especially at its boundaries. In addition, the properties of approximation and convergence of direct and inverse extended and multidimensional trigonometric $F^{m}$-transforms are discussed. Then direct formulas for partial derivatives of functions of several variables are obtained in terms of trigonometric $F^{m}$-transforms, which are used to solve the Cauchy problem for the transport equation. A new image compression method is proposed and compared with well-established compression methods such as JPEG, JPEG 2000 and their less complex variations JPEG(APDCBT), JPEG(APUBT3), APUBT3-NUP, JPEG-FT. We have shown that this $^tbar{F}^ {11 }$-transform image compression method has high accuracy and reasonably low (irredicible) complexity.
Název v anglickém jazyce
Trigonometric Fmn-transform of multi-variable functions and its application to the partial differential equations and image processing
Popis výsledku anglicky
In this study, we focus on the extention of the trigonometric $F$-transform for functions in one variable to: (i) a larger domain; (ii) a higher degree of the $F^m$-transform, and (iii) many-variable functions to improve its approximation properties over the entire domain and especially at its boundaries. In addition, the properties of approximation and convergence of direct and inverse extended and multidimensional trigonometric $F^{m}$-transforms are discussed. Then direct formulas for partial derivatives of functions of several variables are obtained in terms of trigonometric $F^{m}$-transforms, which are used to solve the Cauchy problem for the transport equation. A new image compression method is proposed and compared with well-established compression methods such as JPEG, JPEG 2000 and their less complex variations JPEG(APDCBT), JPEG(APUBT3), APUBT3-NUP, JPEG-FT. We have shown that this $^tbar{F}^ {11 }$-transform image compression method has high accuracy and reasonably low (irredicible) complexity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soft Computing
ISSN
1432-7643
e-ISSN
1433-7479
Svazek periodika
—
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
31
Strana od-do
13301-13331
Kód UT WoS článku
000864204500001
EID výsledku v databázi Scopus
2-s2.0-85139173741