Composition Models of Fuzzy Relations Considering Importance Levels of Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AN2302G9D" target="_blank" >RIV/61988987:17610/22:N2302G9D - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61988987:17610/22:A2302G9D
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9953776" target="_blank" >https://ieeexplore.ieee.org/document/9953776</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/KSE56063.2022.9953776" target="_blank" >10.1109/KSE56063.2022.9953776</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Composition Models of Fuzzy Relations Considering Importance Levels of Features
Popis výsledku v původním jazyce
Several fuzzy concepts are involved in relational databases such as the degree of fulfilment of a graded property, the level of importance (or of possibility) of a component in a query, grouping features, or the concept of fuzzy quantifiers. We have recently approached the concepts of excluding features and unavoidable features to construct the extensions of fuzzy relational compositions. The extended compositions include the employment of fuzzy quantifiers as well. In this work, we approach the concept of importance levels of considered features in a particular sense that is intuitively suitable to the classification tasks. Then we propose a direction of incorporating this concept into the existing fuzzy relational compositions. We provide various useful properties related to the new models of the compositions. Furthermore, a simple example of the classification of animals in biology is addressed for the behaviour illustration of the proposed models. Finally, we examine the applicability of the new models to the practical application of the Dragonfly classification, which has been considered previously.
Název v anglickém jazyce
Composition Models of Fuzzy Relations Considering Importance Levels of Features
Popis výsledku anglicky
Several fuzzy concepts are involved in relational databases such as the degree of fulfilment of a graded property, the level of importance (or of possibility) of a component in a query, grouping features, or the concept of fuzzy quantifiers. We have recently approached the concepts of excluding features and unavoidable features to construct the extensions of fuzzy relational compositions. The extended compositions include the employment of fuzzy quantifiers as well. In this work, we approach the concept of importance levels of considered features in a particular sense that is intuitively suitable to the classification tasks. Then we propose a direction of incorporating this concept into the existing fuzzy relational compositions. We provide various useful properties related to the new models of the compositions. Furthermore, a simple example of the classification of animals in biology is addressed for the behaviour illustration of the proposed models. Finally, we examine the applicability of the new models to the practical application of the Dragonfly classification, which has been considered previously.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 2022 14th International Conference on Knowledge and Systems Engineering (KSE)
ISBN
978-1-6654-5281-6
ISSN
2164-2508
e-ISSN
2694-4804
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Nha Trang
Místo konání akce
Nha Trang
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—