Generation of continuous T-norms through latticial operations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402I2V" target="_blank" >RIV/61988987:17610/23:A2402I2V - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S016501142200392X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016501142200392X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2022.09.005" target="_blank" >10.1016/j.fss.2022.09.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generation of continuous T-norms through latticial operations
Popis výsledku v původním jazyce
It is well known that the usual point-wise ordering over the set of t-norms makes it a poset but not a lattice, i.e., the point-wise maximum or minimum of two t-norms need not always be a t-norm again. In this work, we propose, two binary operations on the set of continuous Archimedean t-norms and obtain, via these binary operations, a partial order relation ⊑, different from the usual point-wise order ≤, on the set . As an interesting outcome of this structure, some stronger versions of some existing results dealing with the upper and lower bounds of two continuous Archimedean t-norms with respect to the point-wise order ≤ are also obtained. Finally, with the help of the operations on the set , two binary operations on the set of continuous t-norms are proposed and showed that the discussed structure is a lattice. Thus we have both a way of generating continuous t-norms from continuous t-norms and also obtain an order on them.
Název v anglickém jazyce
Generation of continuous T-norms through latticial operations
Popis výsledku anglicky
It is well known that the usual point-wise ordering over the set of t-norms makes it a poset but not a lattice, i.e., the point-wise maximum or minimum of two t-norms need not always be a t-norm again. In this work, we propose, two binary operations on the set of continuous Archimedean t-norms and obtain, via these binary operations, a partial order relation ⊑, different from the usual point-wise order ≤, on the set . As an interesting outcome of this structure, some stronger versions of some existing results dealing with the upper and lower bounds of two continuous Archimedean t-norms with respect to the point-wise order ≤ are also obtained. Finally, with the help of the operations on the set , two binary operations on the set of continuous t-norms are proposed and showed that the discussed structure is a lattice. Thus we have both a way of generating continuous t-norms from continuous t-norms and also obtain an order on them.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000997573800001
EID výsledku v databázi Scopus
2-s2.0-85138517901