Towards Higher-Degree Fuzzy Projection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402I31" target="_blank" >RIV/61988987:17610/23:A2402I31 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s40815-023-01506-0" target="_blank" >https://link.springer.com/article/10.1007/s40815-023-01506-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40815-023-01506-0" target="_blank" >10.1007/s40815-023-01506-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Higher-Degree Fuzzy Projection
Popis výsledku v původním jazyce
Fuzzy projection is a mathematical operator inspired by the inverse fuzzy transform that is used to approximate functions. The fuzzy projection is designed such that the coefficients of the linear combination of the basis functions (fuzzy sets in a fuzzy partition) are optimized to obtain the best approximation of the functions from a global perspective, as opposed to the fuzzy transform, where the approximation focuses on fitting functions locally. The aim of this paper is to extend the fuzzy projection to a higher degree, similarly to the fuzzy transform, where the coefficients of the linear combination of the basis functions are expressed by polynomials. In this way, we can significantly improve the quality of the approximation by combining the settings of the fuzzy partition and the degree of polynomnials. In this paper, we show that a higher-order fuzzy projection can be computed using matrix calculus, leading to an easy algorithmization of the method. We also give its approximation properties and its applicability to discrete functions. The usefulness of higher-order fuzzy projection is demonstrated on two tasks, namely continuous function approximation and audio signal compression and decompression, where the results are compared with other relevant methods.
Název v anglickém jazyce
Towards Higher-Degree Fuzzy Projection
Popis výsledku anglicky
Fuzzy projection is a mathematical operator inspired by the inverse fuzzy transform that is used to approximate functions. The fuzzy projection is designed such that the coefficients of the linear combination of the basis functions (fuzzy sets in a fuzzy partition) are optimized to obtain the best approximation of the functions from a global perspective, as opposed to the fuzzy transform, where the approximation focuses on fitting functions locally. The aim of this paper is to extend the fuzzy projection to a higher degree, similarly to the fuzzy transform, where the coefficients of the linear combination of the basis functions are expressed by polynomials. In this way, we can significantly improve the quality of the approximation by combining the settings of the fuzzy partition and the degree of polynomnials. In this paper, we show that a higher-order fuzzy projection can be computed using matrix calculus, leading to an easy algorithmization of the method. We also give its approximation properties and its applicability to discrete functions. The usefulness of higher-order fuzzy projection is demonstrated on two tasks, namely continuous function approximation and audio signal compression and decompression, where the results are compared with other relevant methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06280S" target="_blank" >GA23-06280S: Nové přístupy pro předvídání finančních časových řad v rámci fuzzy-pravděpodobnostního prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Fuzzy Systems
ISSN
1562-2479
e-ISSN
2199-3211
Svazek periodika
—
Číslo periodika v rámci svazku
30.03.2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
2234-2249
Kód UT WoS článku
000960863100002
EID výsledku v databázi Scopus
2-s2.0-85151321331