On Solvability Degree of Systems of Partial Fuzzy Relational Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502NM4" target="_blank" >RIV/61988987:17610/24:A2502NM4 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10612055" target="_blank" >https://ieeexplore.ieee.org/document/10612055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FUZZ-IEEE60900.2024.10612055" target="_blank" >10.1109/FUZZ-IEEE60900.2024.10612055</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Solvability Degree of Systems of Partial Fuzzy Relational Equations
Popis výsledku v původním jazyce
Systems of partial fuzzy relational equations employing undefined values in the antecedents and consequents have been approached recently. The primary focus was on the issues of sufficient solvability and solvability criteria. This study introduces another perspective, investigating the behavior of solvability degrees of these systems. We employ operations from the Lower estimation and Dragonfly partial algebras developed in the partial fuzzy set theory framework. Initially, we establish a degree of solvability in an appropriate space of approximations containing potential solutions for the systems. Subsequently, we introduce the concept of the alpha-lift for a given partial fuzzy set and provide its fundamental properties. This concept is employed to modify the antecedents and consequents of a given system of partial fuzzy relational equations, resulting in a modified system. The solvability degree of this modified system is then studied, and we demonstrate that, under sufficient conditions, it significantly enhances the solvability degree of the initial system. This positive impact is observed in the G"{o}del algebra, the underlying algebraic structure of partial algebras. In conclusion, we provide illustrative examples that effectively demonstrate the theoretical results.
Název v anglickém jazyce
On Solvability Degree of Systems of Partial Fuzzy Relational Equations
Popis výsledku anglicky
Systems of partial fuzzy relational equations employing undefined values in the antecedents and consequents have been approached recently. The primary focus was on the issues of sufficient solvability and solvability criteria. This study introduces another perspective, investigating the behavior of solvability degrees of these systems. We employ operations from the Lower estimation and Dragonfly partial algebras developed in the partial fuzzy set theory framework. Initially, we establish a degree of solvability in an appropriate space of approximations containing potential solutions for the systems. Subsequently, we introduce the concept of the alpha-lift for a given partial fuzzy set and provide its fundamental properties. This concept is employed to modify the antecedents and consequents of a given system of partial fuzzy relational equations, resulting in a modified system. The solvability degree of this modified system is then studied, and we demonstrate that, under sufficient conditions, it significantly enhances the solvability degree of the initial system. This positive impact is observed in the G"{o}del algebra, the underlying algebraic structure of partial algebras. In conclusion, we provide illustrative examples that effectively demonstrate the theoretical results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004583" target="_blank" >EH22_008/0004583: Excelentní výzkum v oblasti digitálních technologií a wellbeingu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 International Conference on Fuzzy Systems (FUZZ)
ISBN
979-835031954-5
ISSN
1098-7584
e-ISSN
1558-4739
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Yokohama, Japan
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—