Numerical approach to determination of equivalent aerodynamic roughness of Industrial chimneys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F18%3A10240576" target="_blank" >RIV/61989100:27120/18:10240576 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.compstruc.2017.03.013" target="_blank" >https://doi.org/10.1016/j.compstruc.2017.03.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2017.03.013" target="_blank" >10.1016/j.compstruc.2017.03.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical approach to determination of equivalent aerodynamic roughness of Industrial chimneys
Popis výsledku v původním jazyce
In building practices, smokestacks are commonly sheathed with smooth metal plates. The wind load acting on such sheathed smokestacks can be calculated according to applicable standards. However, requirements for sheathing smokestacks with corrugated metal have been recently increasing due to dilatation of the metal plate. For these cases, the calculation standards do not define parameters for determining the sheathing roughness that affects the load size. The calculation standards take into account only air flow around a cylinder with a coarse (rough) surface. In the case of a greater unevenness of sheathing of the flown around body, the standard takes into account only the roughness height, in this case, the metal corrugation height regardless of its type and shape. This fact may result in a large increase in frontal wind resistance. One of the options to determine the load acting on the flown around smokestack sheathed with metal other than conventional smooth metal is a numerical solution. Creation of a corrugated sheathing mesh is demanding on the number of cells in the calculation area, and therefore, this approach is unrealistic for solution on desktop PCs at the present. The purpose of this numerical study is to determine an appropriate substitute, equivalent aerodynamic roughness, and thus the possibility of modelling in a simplified calculation area using the "wall function". A properly determined equivalent aerodynamic roughness contributes to the correct definition of the drag coefficient value that defines the size of the wind load acting on the flown around object (in Fluent drag coefficient). The presented thesis simulates airflow around a realistic smokestack of a circular section for two different types of sheathing - corrugated and trapezoidal plates. The task is dealt with using the finite volume method using CFD codes in Ansys Fluent software. The numerical solution results are evaluated and compared with standard regulations. (C) 2017 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Numerical approach to determination of equivalent aerodynamic roughness of Industrial chimneys
Popis výsledku anglicky
In building practices, smokestacks are commonly sheathed with smooth metal plates. The wind load acting on such sheathed smokestacks can be calculated according to applicable standards. However, requirements for sheathing smokestacks with corrugated metal have been recently increasing due to dilatation of the metal plate. For these cases, the calculation standards do not define parameters for determining the sheathing roughness that affects the load size. The calculation standards take into account only air flow around a cylinder with a coarse (rough) surface. In the case of a greater unevenness of sheathing of the flown around body, the standard takes into account only the roughness height, in this case, the metal corrugation height regardless of its type and shape. This fact may result in a large increase in frontal wind resistance. One of the options to determine the load acting on the flown around smokestack sheathed with metal other than conventional smooth metal is a numerical solution. Creation of a corrugated sheathing mesh is demanding on the number of cells in the calculation area, and therefore, this approach is unrealistic for solution on desktop PCs at the present. The purpose of this numerical study is to determine an appropriate substitute, equivalent aerodynamic roughness, and thus the possibility of modelling in a simplified calculation area using the "wall function". A properly determined equivalent aerodynamic roughness contributes to the correct definition of the drag coefficient value that defines the size of the wind load acting on the flown around object (in Fluent drag coefficient). The presented thesis simulates airflow around a realistic smokestack of a circular section for two different types of sheathing - corrugated and trapezoidal plates. The task is dealt with using the finite volume method using CFD codes in Ansys Fluent software. The numerical solution results are evaluated and compared with standard regulations. (C) 2017 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Structures
ISSN
0045-7949
e-ISSN
—
Svazek periodika
207
Číslo periodika v rámci svazku
September 2018
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
187-193
Kód UT WoS článku
000447109600016
EID výsledku v databázi Scopus
2-s2.0-85017189284