Numerical simulation of the interaction between fibre concrete slab and subsoil-the impact of selected determining factors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F20%3A10246515" target="_blank" >RIV/61989100:27120/20:10246515 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/12/23/10036/htm" target="_blank" >https://www.mdpi.com/2071-1050/12/23/10036/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su122310036" target="_blank" >10.3390/su122310036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical simulation of the interaction between fibre concrete slab and subsoil-the impact of selected determining factors
Popis výsledku v původním jazyce
Shape and material optimization of building structures, including reducing the amount of concrete used, are very important aspects in sustainable construction. Numerical modelling is currently used very effectively to design optimized and sustainable structures, including their interaction with the surrounding rock environment. This paper is focused on the three selected factors of numerical modelling of fibre concrete slab and subsoil interaction: (1) the constitutive model of fibre concrete slab, (2) deformational and strength characteristics of subsoil, (3) effect of interface elements. The specialized geotechnical software Midas GTS NX, based on the finite element method, was used for the modelling of this task. Numerical results were compared with the experimental measurement of vertical displacements on the upper surface of slab. In the presented study, three constitutive models of slab recommended in MIDAS GTS NX code for modelling concrete behaviour (elastic, Mohr-Coulomb and Drucker-Prager) were applied. In addition, the sensitivity analysis with respect to the deformational and strength characteristics of subsoil was performed. The numerical study also presents the effect of the interface elements application on the slab behaviour. The numerical results of maximum vertical displacements based on the Drucker-Prager and elastic model underestimated both the experimental results and numerical results based on the Mohr-Coulomb model. From the qualitative point of view (shape of deflection curve), the numerical simulation showed the better agreement of the Mohr-Coulomb constitutive model with the experimental measurements in comparison with the other two investigated constitutive models. The performed parametric study documented that reduction of the strength and deformational characteristics of subsoil leads to the increase of maximum vertical displacements in the centre of slab, but the experimentally measured deflection curve, including uplift of slab and gapping occurrence between the slab and subsoil, was not achieved without the interface application.
Název v anglickém jazyce
Numerical simulation of the interaction between fibre concrete slab and subsoil-the impact of selected determining factors
Popis výsledku anglicky
Shape and material optimization of building structures, including reducing the amount of concrete used, are very important aspects in sustainable construction. Numerical modelling is currently used very effectively to design optimized and sustainable structures, including their interaction with the surrounding rock environment. This paper is focused on the three selected factors of numerical modelling of fibre concrete slab and subsoil interaction: (1) the constitutive model of fibre concrete slab, (2) deformational and strength characteristics of subsoil, (3) effect of interface elements. The specialized geotechnical software Midas GTS NX, based on the finite element method, was used for the modelling of this task. Numerical results were compared with the experimental measurement of vertical displacements on the upper surface of slab. In the presented study, three constitutive models of slab recommended in MIDAS GTS NX code for modelling concrete behaviour (elastic, Mohr-Coulomb and Drucker-Prager) were applied. In addition, the sensitivity analysis with respect to the deformational and strength characteristics of subsoil was performed. The numerical study also presents the effect of the interface elements application on the slab behaviour. The numerical results of maximum vertical displacements based on the Drucker-Prager and elastic model underestimated both the experimental results and numerical results based on the Mohr-Coulomb model. From the qualitative point of view (shape of deflection curve), the numerical simulation showed the better agreement of the Mohr-Coulomb constitutive model with the experimental measurements in comparison with the other two investigated constitutive models. The performed parametric study documented that reduction of the strength and deformational characteristics of subsoil leads to the increase of maximum vertical displacements in the centre of slab, but the experimentally measured deflection curve, including uplift of slab and gapping occurrence between the slab and subsoil, was not achieved without the interface application.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000597541200001
EID výsledku v databázi Scopus
—