Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F22%3A10250365" target="_blank" >RIV/61989100:27120/22:10250365 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/15/16/5707" target="_blank" >https://www.mdpi.com/1996-1944/15/16/5707</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma15165707" target="_blank" >10.3390/ma15165707</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement
Popis výsledku v původním jazyce
The current findings on concrete with fibers show that research has focused primarily on individual aspects, especially in terms of mechanical properties and structural uses. However, no broader view of the problems solved has been provided. In this study, we present a conceptual overview of a new, comprehensive experimental program for the assessment of fiber-reinforced concrete, which includes the analysis of microstructural and structural elements, as well as specific features such as shrinkage and resistance to pressurized water. The proposed experimental program included several variants of schemes for the dosing of fibers into concrete, using steel fibers that were short and straight. Fiber dosing was performed up to 110 kg/m(3). The basic tests performed included tests of the compressive strength of concrete, and of the split and flexural tensile strength for different dosing amounts. Within the structural tests of reinforced concrete beams without shear reinforcement, two variants of spans with different degrees of reinforcement were implemented. Herein, the test results are evaluated graphically with a detailed analysis of the positive effect of fibers, and we also provide general recommendations for the structural uses of the fibers used and the design of fiber-reinforced concrete structures. Among the important results of this experimental program was the observation of a significant increase (of the order of tens) of the percentage of the split tensile strength and an increase of the overall load-bearing capacity of the reinforced concrete beams without shear reinforcement. Among the important aspects of our findings is the fact that a fine-grained concrete mixture was used, which increased resistance to pressure water seepage, and therefore, the effect of shrinkage can be influenced by the method of production and the treatment of the concrete used. We also provide detailed figures of the microstructure.
Název v anglickém jazyce
Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement
Popis výsledku anglicky
The current findings on concrete with fibers show that research has focused primarily on individual aspects, especially in terms of mechanical properties and structural uses. However, no broader view of the problems solved has been provided. In this study, we present a conceptual overview of a new, comprehensive experimental program for the assessment of fiber-reinforced concrete, which includes the analysis of microstructural and structural elements, as well as specific features such as shrinkage and resistance to pressurized water. The proposed experimental program included several variants of schemes for the dosing of fibers into concrete, using steel fibers that were short and straight. Fiber dosing was performed up to 110 kg/m(3). The basic tests performed included tests of the compressive strength of concrete, and of the split and flexural tensile strength for different dosing amounts. Within the structural tests of reinforced concrete beams without shear reinforcement, two variants of spans with different degrees of reinforcement were implemented. Herein, the test results are evaluated graphically with a detailed analysis of the positive effect of fibers, and we also provide general recommendations for the structural uses of the fibers used and the design of fiber-reinforced concrete structures. Among the important results of this experimental program was the observation of a significant increase (of the order of tens) of the percentage of the split tensile strength and an increase of the overall load-bearing capacity of the reinforced concrete beams without shear reinforcement. Among the important aspects of our findings is the fact that a fine-grained concrete mixture was used, which increased resistance to pressure water seepage, and therefore, the effect of shrinkage can be influenced by the method of production and the treatment of the concrete used. We also provide detailed figures of the microstructure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-08772S" target="_blank" >GA21-08772S: Vliv samovyhojovacích účinků na prodloužení životnosti konstrukcí vyrobených z vysokohodnotného betonu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
"nestrankovano"
Kód UT WoS článku
000845498100001
EID výsledku v databázi Scopus
—